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Introduction 

The concept of the yield surface is known from classical plasticity theo­

ry. For brittle fracture the meaning of the yield envelope is, that out­

side this envelope, continuous degradation of strength properties occur. 

One way to describe this surface is to look at particular mechanisms, 

f.i. plastic yielding, crack propagation, microbuckling, layer breaks 

and so on. This is shortly discussed in § 2. This approach is compli­

cated by e.g. interacting mechanisms, and cracks in discrete interac­

ting layers; so only a tendency can be given. 

Another possibility is to describe the surface from test values. This 

is done for pine in § 1. The used tensor polynomial criterion meets the 

requirement of invariance, contains the properties of stress tensors, 

so can be regarded as a polynomial expansion of the yield surface. 

Therefore an accurate description is possible using as much terms as 

necessary. It is demonstrated for pine that one criterion can give all 

the variations in strength in the different planes by any stress combi­

nation, at any plane. 

So far, the existing criteria apply only in certain circumstances and 

limited regions, and only in the main material planes. 

The, at first glance curious behaviour of the off-grain-axis strength 

(p.e. fig. 8), is entirely determined by tensor-transformulations. 

The general failure criterion contains some local strength increases and 

deviations from orthogonal strength behaviour. Therefore the critical 

distorsional energy theorem is only approximately true. For practice 

however, the orientation of the tangential and radial planes are not 

known, so a lower bound criterion has to be used that will be trans­

verse isotropic depending on the weekest plane (see conclusion § 1.3. 

and § 2.6.). 

The criterion for clear wood can also be used to investigate the influ­

ence of faults and knots in timber theoretically as next step. 

It is intended to do tests in tri-axial compression and compression 

with low tension to measure the order of deviations from the simplest 

equation; the hardening properties and the influence of time. 

This can be done by a multi-axial cell (see [15]). 



Phenomenological failure criteria 

General properties of initial yield surfaces 

Because the many aspects of failure and the many possible mechanisms 

in different circumstances it seems to be useful to describe a yield 

surface as an inscribed envelope of those possible yield- and fracture-

surfaces based on the appropriate, measured, independent strength com­

ponents. 

General expressions of the yield surface in strength tensors are men­

tioned in [1]: in the powerform: ' 

(F. - a.)°'+ (F.. o. a.)^ + (F.., o. a. a,)^ + ... = i 
1 1 13 1 ]' 13k 1 3 k' 

that can be regarded as a general form on a polynomial basis known from 

invariant theory [9] or easier, and not less general in possibilities of 

fitting, in the tensor polynomial form: 

F.a.+F..a.a. + F.., a. a. o. +...=l(i,j,k=l,2,3...6), 
1 1 13 1 3 l]k 1 3 k ^ 9 J > 55 

that can be regarded as a general expansion of the real yield surface. 

The polynomial basis can be derived from the following considerations of 

symmetry. 

For wood the principal directions of strength may be regarded to be ortho­

gonal and so the higher order terms F.., may be omitted and the simplest 
13K 

form of the failure surface in the stress space becomes: 

F. a. + F.. a. a. = 1 (i, j, k = 1, 2 ... 6) (1) 
1 1 1 3 1 3 ^ 5 J 5 9 

For reasons of energetic reciprocity [5] F.. = F.. (i ^ 3) and because 

wood can also be regarded to be orthotropic in the main planes, the in­

teraction between the shear stresses can be disregarded F.. = 0 (i # 3; 
0 13 -' ' 

is J = '̂9 5, 6) so e.g. (1) is for a plane stress state in p.e. the 1-2 

plane: 

^1 ^1 + ^2 02 + Fg Og + F^^ al + 2 F^2 ^l "2 + ^22 "l + ^66 °l + 

+ 2 F ö^ Og + 2 F2g O2 Og = 1 (1') 
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For the same reasons of orthotropic symmetry in the main planes, thus 

expressed in the material axes (along the grain - tangential - radial 

directions) the shear strength has to be identical in positive and ne­

gative direction, so odd-order terms of Og are zero and the coupling 

between normal- and shear strength vanish: F̂ g = F̂ g = Fg = 0 and equa­

tion (1) becomes: 

^1 ^1 + ^2 O2 + F^^ al + 2 F^2 ^i ^2 + ^22 4 + ^65 °6 = ^ ' ^^"^ 

For a thermodynamic real surface (i.e. positive strain energy) the va­

lues: F.. must be positive and also the failure surface cannot be open-

ended (= hyperboloid) so the interaction terms are constrained to: 
2 2 

F.. F.. > F.. (no summation convention) or in (1"): F,, F„^ - F,^ > 0 (2) 11 33 13 11 22 12 

(F^, F22 - F?2 is a parabolic surface and F̂ ^ F̂ p < ^^2 is hyperbolic). 

Eq. (1) can also be given in strain components: 

G. e. - G.. e. E. = 1 (3) 
1 1 13 1 3 

with: G. = F S . ; G.. = F S . S . ; S.. = Elastic stiffness matrix 1 m mi 13 mn mi nj ' 13 

being orthotropic too. 

For the uniaxial tensile strength X along the grain (= parallel to the 

1-axis) eq. (1") is: (Og = o^ = 0). 

^11 "̂ 1 "̂  ̂ 1 °1 " -̂  "̂ ""̂ ^ a^ = X so F^^ X^ + F^ X = 1 

and for uniaxial compression along the same direction: (a. = -X' as com­

pression strength) 

F^^ (X')^ - F^ X' = 1 

Solving the two equations in F--, and F̂  gives: 

1 , „ _ 1 _ 1 
11 = XX^ ̂ """̂  ̂ 1 = X IT 

In the same manner is; 

22 ~ YY' ^'^ 2 ~ Y Y' 
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For pure shear (o = a = C) eq. (1") is with o = S as shear strength; 

F = -^ . 
^66 ^2 ^ 

So for plane failure in the tangential plane (1") is: 

2 2 2 

a ^ ( l - 3 ^ ) + 0 2 ( 1 - ^ ) + 3 ^ + 2 F ^ 2 ^ ° 2 + Y T ^ " 4 = 1 ( 4 ) 

F^„ has to be measured in bi-axial tests, because in an uni-axial test 

the influence of F-j is small and because F.2 is very sensitive to small 

errors in X, Y and S. From the stability condition (2): 

y XX' YY' < ̂ 2 < + ; XX' YY' ^̂  ̂  ^ ° ^ "°°^\ 

In the criteria of Norris [2] or of Hill or Hoffman [3]: F 2 = n yy 
1 1 1 1 F = - -̂  (-_ + _ - — - ) , and is not an independant quantity. 

X Y Z^ 
It is also suggested to ignore F „ i.e. 

12 
0 [4] for highly orthotro­

pic materials (like wood is,giving errors ̂  ~ 20%, //grain). 

Because the influence of F „ is small , analytical failure is almost in­

dependent of the type of failure criterion used for most types of test 

results. 

F-2 determines 6, the rotation of the 

failure-ellipsoid with respect to the 

material-axes. For wood this can be 

important for stresses _[_ grain. 

•S. 
ö = i arctangf ?diz-. 

'11 " ' m -

Fig. (o. 0), 

Transformation of the strength tensors: 

In the x', y' coordinates of fig. 2 the strength tensors are 

^2 

^3 

11 

pi pi pt pi pi pi 
11 12 13 14 15 16 

22 ^23 24 ̂15 26 
F' F' F' F' 
33 34 35 36 

pit pi pi 
'HH ^45 46 

F' F' 
55 '56 

symmetry '66 



S' 

The principal strength components are (in x, y): 

F. 
1 

f ^ 1 1 
^2 

^3 
0 

0 

0 

F. . =•< 
1] 

F F F 0 
11 'l2 ^ 3 

F22 F23 O 

^33 ° 

44 

Syr*i. 

Transformation about the 3-axLS gives: 

0 0 

0 0 

0 0 

0 0 

f55 0 

66 Fig. 2. Positive rotation 

about the main 

3-axls (z-axis). 

n = 
F + F F - F 
'1 '2 ^1 li 

2 + 2 
cos 29 

F + F F - F 
1 2 1 2 

F^ = - ^ - ^ — - - ^ 2 sin 26 

(F, 
6 '^1 

F2) sin 29 

r' , 
invariant 1 cos 29 jsin 29 icos 49 sin 49 

F' 
11 

F' 
22 

ip ' 
: ' l 2 
F' 
^66 
F' 
' 1 6 

'F' 
^26 
F' 

13 
F' 

• 2 3 
F' 
^36 

' F ' • 
^ 4 4 \ 
pt ! 

;^55 1 
F ' •• 
^ 5 
pi 

i 33 i 

I 

41 

0 

0 

I 

I 

0 

I 

I 

0 

F 
33 

-I. 

O 

O 

O 

o 

I. 

- I . 

o 

Ie 

-Ie 

o 

o 

-41, 

O 

O 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

-21. 

+21. 

O 

o 

o 

o 

o 

o 

o 

Fig. 

'3 

3, 

4Ö2 

ZSh-/'L 

A Jfh-~. 

Positive signs in 

right handed coor­

dinate system. 

(3F^^ + 3F22 + 2F^2 +I'66^^^ 

(F 
11 F22)/2 

I, = 

(F^,tF22-2F,2-Fgg)/8 

(^ll^F22 + 6F,2-F6g)/8 

(̂ ll + ̂ 22-2Fi2+Fgg)/8 

(F^3 + F23)/2 

(F^3-F23)/2 

(F,^+F53)/2 

(F,,-F33)/2 

Read p.e.: F' = I. + I2 cos 29 + I cos 4f 

Sign convention for shear: 

If an outward normal of a plane points to a positive direction, the plane 

is positive, and if on a positive plane the stress component acts in the 

positive coordinate directions, this component is positive. 
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On a negative plane, the stress in negative coordinate direction is po­

sitive. 

Outer the main directions there is a difference in positive and negative 

shear strength, so a sign convention is necessary. 

Transformation is possible in two ways: The stress components can be 

transformed to the material-symmetry axes, so eq. (1") becomes: 

1̂ ^1 ̂  ̂2 ̂ 2 ̂  ̂ ll^^P' ̂  2F^2 ̂ 1 ̂ 2 ̂  ̂ 22(^P' ' he^'^è^^ = ' (5) 

Or the material symmetry axes can be rotated leaving the stress compo­

nents unchanged so (1") is: 

F| a^ + F̂  02 + F̂  Cg tF^^ a2 + F̂ 2 4 ^ ^6 4 ^ ^^2 '̂l ̂ 2 + 

t 2 F | g a ^ a g + 2F^g a 2 a g = 1 (6) 

1.2. Verification by test-results 

To demonstrate the possibility of fitting test results to the simple 

failure criterion (1), strength values are taken from [6]. 

1.2.1. Shear perpendicular to the grain (rolling shear) 

Ml 
.t<n<)i>5 * treï4 

In most shear-test the strength is governed by the bending strength per-

- •' ••• pendicular to the gram and the high discontinuity 

peaks at the ends of the shearing plane. So the 

strength is a lower bound of a pre-crackeA speci-

mum. These effects are reduced in the tests men­

tioned in [6] page 904 by fitting the test-pieces 

precisely to the openings of the test-blocks. Only 

if the grain direction is parallel to the shear 

plane, it can be expected that additional stresses 

have a minor influence on the shear strength. So 

only these cases are considered here. 

F i g . 4 . 

-x 
r/>>//,\ 7\ rrrrrrrr 

y e»in-
prestion failure 

F i g . 5 . exeUideti +t^t. 

For pure s h e a r eq . (6) becomes (o . 

^6 ^6 + ^65 ^6 

0) 

( 7 ) 

• i 
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In the main planes (tangential- and radial-plane), there is no diffe­

rence in shear strength in one direction and the opposite direction so 

Fg = 0 and if there is a shear stress in the tangential plane, the 

same stress is in the radial plane and the weakest plane controls the 

shearing strength so for 6 

.2 , . „ 1 

0 and ^ eq. (7) is; 

^66 "e -̂  ^66 
27 

with Og ~ 27 kgf/cm as median of Og = 18-36 kgf/cm (see [5] page 906 

for pine). 
TT 

For 9 = —,a difference in positive and negative shear strength can be 

exptected, because for a shear stress in one direction there is a ten­

sile stress in the tangential plane, and for shear in the opposite di­

rection there is a tensile stress in the stronger radial plane. 

In the double shear test at 45 degrees one plane has positive shear and 

the other,ïi negative shear and failure is first in the weakest plane. So 

only the negative shear-strength is measured. From [&} page 906 at 9 s; -

^6 ^6^^66 ^5=1--(F^-F2)(sin5) 21,5+| (F^^ t F22 " 2F^2 ̂  ̂ 66 ̂  ̂ ^1,5 )^ 

(F + F - 2F 
^ 11 ^̂ 22 ^̂ 12 

Fgg)(cos TT)(21,5)^ = 1 

TT 2 9 

as a (—) =21,5 kgf/cm as median of o = 18-25 kgf/cm 

-21,5 (i - ̂  - ̂  + ̂ ) + (21,5)2 ( ^ + _i^- 2F,,) 
'X X' Y 12-

On page 748 of [6] values are given of X' =60 kgf/cm als yield compres-
2 

sion stress in the tangential plane (6 = 0) and Y' = 50 kgf/cm in the 

radial plane. The tensile strengths in the same planes can be taken to 

abou1 

809) 

about 34 kgf/cm^ and 45 kgf/cm^ (page 670, 

30' /̂ S éo' 90" 

F i g . 6. pine coiMpre6«,iön i-

^ 2 1 9 5 ( ^ - ^ - ^ t ^ ) t ( 2 1 , 5 ) 2 ( _ i _ 

— = — - 2F ) 45 .50 12-̂  

+ 0,226 + 0,432 - 924,5 F^^ -

p > _ / p p - - _ / ± 
12 ' 1 1 ' 2 2 " 50.34 . 4 

i ^ F ^ 2 = - 3 ' 7 10 
- 4 

^ - ^ = - 4 , 6 7 . 1 0 (o .k 
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-2r3-. 
-2^ With F^2 the second root of the 

2 
-3,7 . 10 

equation is O = 27,8 kgf/cm^ 

However, as stated before, the value of F 2 is 

very sensitive for errors e.g. if Or - -20,5 

(i.s.o.: -21,5) -> F = +4,67 . 10~^ i.e. just the 

upper bound of F 2 and the positive root is 

2 

+26,2 kgf/cm . F has to be measured in a bi­

axial normal stress test, to give the best value. 

The existence of the higher positive shear than 

the negative shear is demonstrated in off-axes 

double shear tests where only one side is the testpiece is failing ([6] 

page 897). 

For praxis it is necessary to give one value of rolling shear. The test 

Fig. 7. Equal test- and 

theory-values. 

results: a. (( 
D 

0) 18-36 kgf/cm ; O^ (( 
b 

45) = 18-25 kgf/cm show 

that this value can be based on some lower bound, p.e. Og = 18 kgf/cm 

or better, depending on the worst variance. In this case also bounds on 

the values of the tensile- and compression-strengths _J_ are necessary: 
^11 + ̂ 22 - ̂ 66 

1:, = F2 and F̂  2 - 9 '^'^'• 

1 
X Y Y' '^^^h2--h^^'é^ 

(T M 
rol 

-) with Fgg 

(^rol)' 

eq. 7 becomes: T < T 
rol' 

1,2.2. Uniaxial strengths j _ grain 

In fig. 5 (from [6] page 748) values are given for the off-axis uniaxial 

compression strength perpendicular to the grain. 
9 

eq. (6) becomes with a_ = a^ = 0: F' a, + Yl O. - 1 o r : 
2 D 11 1 1 1 

. <!lill ^ l ' ^ 2 , , , 3F^^ + 3F22 + 2F^2^^66 a ^ ( — - — + — ^ — c o s 2 9 ) + a ^ ( + 

^11 ^22 „„ ^'11 "̂  ^22 2^12 ~ ^66 
+ ^ . cos 29 + ^ . cos 46 = 1 

• » ' " " ; • 

8 

1 1 2 1 
For 9 = 0 : 0^ F^ + 0^ T^^--1^ o^{-^-^) ^ a^ ^^--l-^O^^--X; O^^ 

For 6 = 9 0 ° : a^^ r^+al^ r^^ ^ 1--a^^i^-^) ^ al^ -^=i^a^^=Y; o^^---Y^ 

F F 
For 9 = 3 0 ° : o^^(^ F^+-^) + ol^i^ F^^+-^ + ^ F ^ ^ + ^ F g g ) = 1 
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F F F F 2 F F 
o , . o / l 2 , 2 / I l 22 ^̂ 12 "^66, For 6=45 : a^^(^^-^) , ö^^(~ , - ^ ^ - ^ ,-^) = l 

„.̂ .̂ p _ l _ ^ - ^ _ ^ . p _ 1 _ J _ = i - i p - 1 . p 
1 X X' 34 50 ' 2 Y Y' 45 50 ' 1 1 - 6 0 x 3 4 ' 22 50 x 45 

65 
27 
— and the upper bound of F • F, 2 4,67 . 10 (see § 1.2.1. ). 

The following values are found, as roots of the equations, given in fig- 8. 

A better fit is possible by calculating the 

main tensile strengths X and Y from the equa­

tions inserting some measured values ~ö „ , 

nne 
Wit wUtsU] 

Com' prei-si ,n± 

Y)" ^5' éo' 

+<-n5ile -L 

-S-o 

-O^^ and -OgQ with: 

cp' 
12 

a / 
XY X'Y 

(a g 1) 

Fig. 8. Yield stresses 

+A5 

However, even with approximate values from 

incomparable tests, a good fit is possible. 

In [6] the tensile strength _[_ is mostly ta­

ken to be 1/2 to 3/4 times the compression 
2 

strength (being 50 kgf/cm see below) so 
2 

~ 30 to 45 kgf/cm and the radial tensile 

strength is stated to be about 1,5 times 
2 

the tangential strength (~ 45 kgf/cm ). 
2 

The value of 34 kgf/cm is given in [6] as 

the best value of the tangential tensile 

strength. (Probably the physical conditions 

as moisture content, density, volume factor, 

are not very different in those tests). 

In Fig. 9. ([6] page 721) it is seen that after first flow, hardening is 

occurring and after some equal plastic deformafion the stresses are almost 

the same, independent of orientation. 

So for porportional loading (in practice occurring) this constant stress 

can be taken as strength value. Then F,2 must be bounded too, giving: 

Ppne y ieU stress COW^K. 

F i g . 9. 

^11 ^ ^22 ^56 
12 
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This condition is the same as in § 1.2.1. for one value of rolling shear 

strength and taking F = F2 because of § 1.2.1., eq. (6) becomes for this 

h^Y ~ W^^ ^l^X^^ " ̂  (X ̂  I X' =: 30 kgf/cm̂ ) 

So it is necessary to choose a constant lower bound of the tensile strength 

too. 

In [6] page 809, probably the lower bounds were taken as given in fig. 8, 

12 
2 

so X' = -40 and X ~ 30 kgf/cm . In tnis case F^^ is a small quantity and 

may be ignored because 

F + F - F F 
_ ^ U _ ^ 2 2 _ 6 6 ^ '66_ 1 _ 1 _ 1 _ 1 

12- 2 11 2 XX' . 2 30x40 ^ 2 - ^ ^^ 
2T , 2T -, 
rol rol 

T̂ ĵ_ ~ /30.20' = 24,5 kgf/cm^ 

2 
It is seen m fig. 7 that this value is close to 21,5 and 27 kgf/cm , at 

first flow. 

1.2.3. Pure shear parallel to the grain 

For a rotation about the 3-axis or the axis in the grain direction eq. (6) 

becomes for pure shear in that direction: 

2 , . ̂  ^, ^44 "̂  ̂ 55 I'4i|-I'55 ' " ^' 
Fî H 0^ = 1 with F^^ = 2 -" 2 ^°^ 29 

Sor for 

9 = 0 " ^^4 = F^^ and for 9 = 90° - F^^ = F55 . 

2 
In [6] page 905 and 907 the values are given as: o^ = 100,5 (89-112 kgf/cm ) 

2 
in the tangential plane, and ô ^ = 114,5 (110-119 kgf/cm ) in the radial 

plane. 

At 9 = 45°: a^ (45°) = 103 kgf/cm^ (93-113 kgf/cm^). 

F + F 
o 4 4 5 5 1 1 1 1 

Predicted from theory is F' ('45 ) = x --^ ( - + -) = —; 
,. •„ ^^ (100,5)2 (114^5)^ (106,8)' 

so a (1+5°) = = 106,8 kgf/cm^. ,,-

/F;^ (45°) 
2 

This is close to the measured value of 103 kgf/cm . 
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F + F F - F F 
^44 55 44 55 45 

More general F' = TJ, + x cos 29 - —:r- sin 29. 

So it is seen that the interaction value between a,, and o^: F, r- ~ 0 as 
H 0 4b 

expected from general considerations (§ 1.1). 

Shear strength parallel to the grain with compression perpendicular to 

the grain 

The type of tests used in [5] give a higher shear strength than measured 

in [7]. This is explained in § 2.3. 

Tests from [7] show a deviation from orthogonal strengths. In these tests, 

in the tangential plane, the influence of normal stress on the shear 

"strength" is small. In the radial plane there is an increasing shear 

"strength" with increasing compression stress normal to this plane (fig. 

10). So coupling terms between a, en o^. can not be neglected in this case. 

Because the shear strength in the main planes is independent of the sign 

of the stress, odd terms (p.e. F F^g, F2g) disappear and higher order 

terms must be used, and the failure surface becomes: 

F. o. + F.. a. a. + F.., o. a. a, = 1 
1 1 13 1 3 13k 1 3 k 

For symmetry reasons (see § 1.1) F. ., = F., . = F., . = F, . . = F, . . . Further, 
13J^ ^^1 1^^ ^^D ^1-^ 

the cubic terms F... are redundand and can be omitted. 
Ill 

So with even-order terms in ö the equation becomes for plane stress: 

1̂ <̂1 + ̂ 2 ̂ 2 + ̂ 11 4 ^ ̂ 22 4 + ̂ 66 4 ^ 21-12 \ 2̂ + ̂ 1̂12 4 2̂ ̂  

+ 3F221 4 °l + 3Figg â  a2 + 3F2g6 o^ al = 1 

Because of minor interaction between ö and a^ in the usual applied plane 

fracture tests, F 2 and F̂ 2-i can be neglected and in the tangential plane 

also F„_^ is small so there remain: 265 

1̂ ̂ 1 + ̂ 2 ̂ 2 + ̂ 1 4 + ̂ 22 °2 ̂  ̂ 66 4 + 2Fi2 ̂ 1 ̂ 2 "̂  ̂ 1̂66 ̂ 1 °5 = ̂  ^̂ ^ 

This surface has to be closed; so for 2 collinear loading paths, there are 

only 2 distinct roots and taking the proportional loading path as: 



-1Z-

a = s- A; 02 = S2 A; Og = Sg A, the equation becomes: 

3^' ^ ^6 ^66 " ̂ ' ^^11 ^1 " ̂ 22 -̂2 ' 2Fi2 ^ =2 + Fgg s^) + A (F^ s^ + 

+ F2 S2) - 1 = O or ', • •• , 

3 2 
a ^ A + a ^ A + a ^ A + a = 0 3 2 l o 

Substitution of A = z - - — gives: 
^^3 

z^ + 3pz + 2q = O 

with; 

^1 ,^2,^ , ^2 .^ ^2 ^1 \ 
P=.r—-(.r—) ;q = (^—) ;̂  + 

3̂ 3 3a3 Sag g^2 2a3 • ; ^., 

3 2 
For;p = -q there are two equal roots and a third root .. 

2 , A n ^ I - -2 /q and z = z = /q so: A = -2 /q - ̂ — and A2 = v^ 
3 ^ 3a3 

3 2 

For p < ~q there are 3 different real roots (p, is negative than) 

with the substitution kx = z or k x + 3pkx + 2q = 0 and k = 2 /]p| this 

becomes: x - 7- x + —;r = 0 and has the form: 
' 4/|p|3 

.3 3 . 1 . . „ ' • 
s m ex "TT s m ot + -r s m 3 a = 0 

. '-i^- • 
So z = k sin a and sin 3a = •-" ;.,->• z = 2/1 p I . sin — arc sin ( ,J—9) and 

/i 1 3 o /i I -J 

A =-^3—- + 2/1 p|. sin (-̂r- arc sin (——!==_)) 
Sag 3 |Fl /|pr 

From the 3 roots (0 ^ a ^ 2TT) the negative one, and the smallest positive 

one can be on the fracture plane. 
3 2 

So p + q ^ 0 gives a bound of F . The equal sign may be approached 

from the lower side to retain a closed surface as can be seen in the fol­

lowing example. 

For 02 = 0 eq. (8) becomes: ,,;, 

F^o^ + F^^o2 + Fgg al + 3F,gg o^o2 = l \:,; ^̂̂  (9) 
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With: 

H W O f''Si 

3F,c, X1300 
Ibb 

66 
= 3900 F 

166 

Fitting this curve to the values of [7] 

project A is only exactly possible when 

the tensile strength _|_ and the compres­

sion strength _[_ are known. 

From proj. B: -1300 psi is assumed. Por 

compressional- and ~-!^ x 1300 = 650 psi 

for tensile-strength (as usual taken, 

§ 1.2.2). 

So eq. (9) becomes: (Og 

^ 

s^ 

= /(-
(1-

1300 

= 5 = ^ ) 

)(1 + 
1300 

) 
(10) 

1 + 6 
1300 

It is seen from fig. 10 that with 3 somewhere between 0,9 and 0,99 (̂  1), 

a good fit is possible. 

For 3 ~ 0,9 the fit is even reasonable for the values of proj. B, demon­

strating that the influence of O2 is probably small. 
2 9 

For pro3. B eq. 8 must be used with: a^ - a cos 9; o„ = 0 sin 9; 
1 max 2 max 

og = "̂ jnax ̂ "̂ ^ ̂  °°^ ̂ ' ^^^ ^^^ strengths for compression an tension in 

the tangential and radial plane are not given in [7] and construction 

from the measured values that are given (see fig. 10: points) will pro­

bably introduce great errors in these strength values and in F,^^. 
166 

Rotating eq. (9) about the 3-axis for 90° gives: (o = 0) 

Fgg Og = 1 or Og = Og 

If O 7̂  0 in the tangential plane but o^ = 0, the fracture surface is; 

F2 02 + F22 ol + Fgg al -- 1 

getting an elliptic form (fig. 10 ) eq. (10) of the radial plane ap­

proaches the parabolic form (with cut off at -X'), known from fracture 

mechanics. (Also the low values of Og, much lower than |-ö/ in stead of 

much higher, [6] indicate initial cracks, see § 2.3). 
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Uniaxial off-grain-axis strength 

So far all rotations were around the grain axes. Taking the 3-axis of 

rotation in the tangential- or radial-direction, the same general frac­

ture equations apply as given in § 1.2.2. 

Usual the tangential fracture plane is regarded, giving a lower bound 

of the strength (or being the weakest plane). 

The existing criteria are given in the main plane, using the transforma­

tion of eq. (5). ... •-; 

For uniaxial stress is: ', '. 

0. = 0 cos 9; ö„ = o s m 6; a^ = o s m 9 cos 9 
1 m 2 m b m 

and eq. (5) becomes: 

2 4 

-m °°^ ' 4-3è-)-^m -" ' 4-f^^ XX' ^2F^2 < -"' « °°^ « + 
^2 . 4 Q „2 . 2 Q 2 Q 
O s m 9 o s m 6 cos 6 

+ % Y , + -, = 1 , •, :• : (11) 

The first two terms can be written: 

2 .2 2 2 '• 
O cos 6 0 sin 6 o cos 6 o sin 
m _m ,_m _m ,._ 

X "*" Y ^ X' "̂  Y' ^ ^i' • 

and because: '" . :;• ' 

2 2 • i 
a cos 6 o sin 9 

m m , . •»:--'r, •: • . 
X ^ Y = ^ ••':''•• 

(Hankinsins formula see [6] page 809; 659; 747) or: 

2 2 • 
Ö cos 6 O sin 6 . • 

-iB + JH ~ 1 
X' Y' 

for compression, F 2 is known from (11). 

Taking the square of both terms, the last equation for compression is; 

4 4 2 2 2 2 4 
a cos 6 2o cos 9 sin 6 O sin 9 
m m _m -

(X.)2 ' (Y')(X') ^ (Y')2 ' •- / 

This must be approximately equivalent to the Norris equation for this 

case: 
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2 4 Q „ 2 2 Q . 2 Q „ 2 . 2 Q 2 Q „ 2 . 4 O 

O COS 9 O cos 6 s m 9 O s m 9 cos 6 O s m 9 
m _JÜ _E! _E! - 1 
(X')2 ^' Y' s2 ^Y')2 

1 3 1 3 . 
—X ~ •, ^, , and in the same way —r- ~ vv f°^ tension. 
g2 X Y s2 ^ 

The value S = V ^—^ - 0,58 / X' Y' ~ 0,6 / X' Y' is measured in [8]. 

Taking the product of both Hankinson's formula's, 

2 2 2 2 
O cos 6 o sin 9 o cos 9 o sin 9 , 

( ^ + Y ^)^ r — + x^-^T- 0 

being the condition for failure in tension or compression, so: 

2 4 2 2 2 2 4 
O cos 9 a s i n 9 cos 9 0 s m 9 

'^ , n i , m . „ 2 c i / l l s , 
— X x i + -yT^ + — Y T ^ ^ m ° ° " ^ h - y j ^ ^ 

+ o ^ s m 9 ( - - ^ ) + - , 1 

t h e n t h i s has t o be e q u i v a l e n t t o eq . ( 1 1 ) : 

2 4 2 4 
*̂m ° ° ^ ® 1 2 2 2 % ^^" ^ 2 1 1 
—XX* ^ ^ 2 F ^ 2 ^ ; 2 ^ ^ m ^ i " ^ ° ° ^ ^ ^ " ^ T ^ % ° ° ^ ^ ^ X " Y^^ ^ 

+ O^ s i n 2 9 ( i - ^ ) = 1 

So: 

2P .^ , 1 . 1 , , 1 
12 ^ g2 X' Y XY' 

For clear wood, mostly: X ~ 2X' and Y' ~ 2Y are taken for the strength 

so XY = 2X' Y'/2 = X' Y' and 2F, ̂  ~ I^+ I - i ^ ̂ + 1 3 _ 1 
12 X' Y XY' 2 XY 2XY XY 2XY 

or, as a first approximation, F-, 2 is in the order of: 

1 1 -1 -1 
^12 ~ "4XY "" ~4X' Y' ^^ / XX' YY' ^ X^T^ ^°'^ stability) 

Because of the strong, orthotropy this value is small in the main planes. 
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Therefore the older Norris equation is a better approximation of the 

strength. In that case: 

/X'Y' 1 

S = / — 2 — and F ~ + --•^- , (F^2 g^^s the opposite sign, but re­

mains small) 

For off-axis strengths the equation for uni-axial stress is: 

^11 ^1 •̂  ̂ 1 '̂ l " -'• t<̂ s;o§U2.2) ^ , . ,. _ (12) 

With the values of [6] page 809, as lower bound of uniaxial strengths, 

(that could be regarded to be the strength at ~ 45 in fig. B) is: 

„ -i_J___l L_ - F - i l - l 1 ^ _ 1 ^ 1 
1 Y vi mn ~ unn ' 0"v' 1 X X' 700 400 ' 2 Y Y' 30 40 ' 11 XX' 700x400 ' 

• 1 1 1 1 _ 1 
F22 =Yr" = 40x30 ' 72 ̂ ^T7r:;2 "̂"̂  ̂ 12 "- / 700 . 400 . 30 . 40 -±^''+ • 1° 

as bounds. The value of S is taken from § 1.2.3., but the right value is 
2 

not important m this case, because 1/S acts together with 2F 2 and here: 
2 • 

2F^ „ + 1/S IS a determining term. .'" ., 

The roots of eq. 12 (see also § 1.2.2) are given in fig. 11. 

It is seen that for F 2 ~ 0 there is a close fit to the Hankinson formu­

la for tension that is supposed to be a good lower bound of measured va­

lues in [5] page 809. 

For compression, F = 0 underestimates the Hankinson values, so for a 
2 2 

precise fit the higher order terms F„_. O2 a^ and F ._ o 0„ have to be 

used. However, the difference is to small to justify a more complex equa­

tion. It is not sure that the Hankinson formula for compression gives 

the points of first flow. Probably the higher order terms indicate that 

some plasticity was allowed in the tests. 
The given bounds in fig. 11, connected with F.2, are also dependent on S. 

The relative lower value of S in [7] will shift those bounds and also the 

coefficients in the Hankinson formula will be lower, (about 1,6 instead 

of 2). 

The possibility of this lower coëfficiënt is also mentioned in [6]. 
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1.3. Conclusion 

It is demonstrated that a nearly exact representation of the failure sur­

face of wood is given by the equation: 

2 2 
^1 ^1 "'' ̂ 2 ̂ 2 "*" ̂ 3 °3 '̂  ̂ 11 "̂ 1 "*" 2Fi2 °1 °2 "̂  2F-[̂ 3 â ^ O3 + F22 ̂ 2 "*" 

2 2 2 2 2 
+ 2F„„ 0„ o, + F„„ 0„ + F,,,, o,, + Ft-c cr̂  + F^^ o, + 3Ficc ^^ ^a + 

23 2 3 33 3 44 4 55 5 65 6 166 1 6 
2 2 

+ 3F^^2 ^1 1̂2 "•" ~̂ 2̂21 '-'2 "1 - 1 
(13) 

The value of F.. gg is a quick damping term with axis rotation and only im­

portant if fracture is surely in the radial plane. In practical applica­

tions, this can not be assured and this local strength increase has to be 

neglected. Also the influence of the third order terms F.,,29 F221 is to 

small to justify a more complicated equation (and bounds) and these terms 

are probably due to some allowed plasticity in the compression tests. 

file:///oWer


-18-

.:*̂ i 

It is not known if this influence remains small in 3-axial test condi­

tions. The roots A of eq. (8) or (13) with the general value of a (see 

§1.2.5) 

_ 2 2 2 
®3 - '̂ 1̂56 ^1 ̂ 6 ^ ^^122 ̂ 1 ̂ 2 "̂  '̂ 2̂11 ̂ 2 ̂ 1 

(if a small quantity), can exist of two small negative equal roots and 

a great positive one. So there is no theoretical exclusion of a high 

3-axial strength. '" . 

Tests have to be done with unequal o,, O2 and 0„ to measure these inde­

pendent material properties. 

Thus far, a strength increase is not apparant for tri-axial strength 

(see also § 2.4) and as a good approximation eq. (13) becomes: 

^1 ̂ 1 + F2 Ö2 + F3 O3 + F^^ al + 2F^2 °i ̂ 2 + 2Fi3 ö^ O3 + F22 O^ + 

+ 2F23 02 03 + F33 al + F̂ ^ al + F55 al + Fgg o^ = 1 (i4) 

For practical applications, the directions of the weakest plane _[_ grain, 

is not known in the structure and a lower bound criterion has to be used. 

It is shown in § 1.2.1. and 1.2.2. that with a lower bound on the tensile 

strength perpendicular to the grain, the quantities in the plane _j_ grain 

(here chosen as 2-3-plane) get the isotropic form, and F__ can be disre­

garded, so eq. (13) becomes: 

2 ;• -• 2 2 _ 2 
1 1 1 1 °1 ^ 2 + 0 3 + 20^ 

(3^-3^) o^ + (Y-Yr)(ö2 + a 3 ) + 3 ^ + 2 F ^ 2 (^1 ^ 2 + ° i ^3)+ TP + 

+ ^ (al+ah = 1 ' ••• (14) 
g2 5 6 

In § 1.2.5 it is shown that for small clear specimens and high shear 

strength (//grain), F can be neglected so eq. (14) can be: 

.1 1. rl l u . ""l . ^ l l ^ l l ^ . 1 r 2 2, , 
^X" X̂ -̂  °1 •*• (y " T̂ '̂ ^ 2 •^°3^ "̂  XX^ YV ~2 ^̂ 5̂ "̂  °6 ̂  " ̂  ^-^^^ 

In fig. 12 eq. (15) is given for only O^ and O2 (Ö3 = Ô ^ = Og = 0) in 

comparison with the usual applied Norris equations. 

Eq. (15) lies closer to the older Norris equations, based on the Henkey-

von Mises-theory and applied for plywood and for wood in the U.S.A. and 
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Fig. 12. Failure surface for o^ = o^ = o^ = ô . = O 

the European (C.I.B.) code: 

^2 2 2 2 2 2 
1 . 2 °6 , \ ^2 "6 , ^ 

-;̂  + -^ + -5- = 1 ; ^ + 7^ + 7^ - 1 etc. , 
yr Y s'̂  (X') (Y') (s') 

than to later proposed equations for wood, what are known to be not en­

tirely adequate. 

Eq. (15) is an extension of the strength criterion to 3 dimensions. 

The general form of eq. (15), independent of the choise of the coordinate 

system is: 

I 2 f 2 I 2 I 2 
'11 '^ l + ^22 ° 2 + ^33 ° 3 ^ ^44 ° 4 

F o + F2 ^2 + F3 O + Fg O + F ; , O ; + F ; ^ O ; + F ^ ^ O ; + F ; , , o r + 

I 2 1 2 I I 1 I 
+ F^t- On + Fcc Oc + 2 F , T O- 0„ + 2 F T „ O „ OO + 2F^T ö„ O, + 2 F T C cf̂  o^ + 55 5 66 6 12 1 2 23 2 3 31 3 1 15 1 5 

2F^g O2 O g + 2 F ^ g O3 ög + 2 F ; 3 % ° 5 = ^ ( 1 5 ' ) 
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Physical failure criteria , 

Discussion of criteria based on plasticity theory • ' 

Potential energy function 

For yield phenomena, occurring e.g. in wood in compression, an extension 

of the isotropic theory is known from Hill. ..; -• 

He postulated the existence of a quadratic plastic stress potential (po­

tential energy function) that had to be orthogonal and symmetric. This 

leads to equal strengths in positive- and negative-direction and no yield 

for hydrostatic stresses. This is in general not true for anisotropy be­

cause for hydrostatic o = O-^ = 0^-.^; e.^ t E-j., i ^TTT' ̂ '̂ ^ yield remains 

possible. Hoffmann [3] modified Hill's theory by adding linear terms to 

account for differences between tensile- and compressive strength. 

The isotropic equivalence is the von Mises-Sleicher hypothesis that the 

second invariant of the deviatior stress tensor is not constant but a 

function of the mean stress (used for materials with Bauschinger effects). 

For isotropy it is the same to state that the critical distorsional ener­

gy is a function of the mean stress in stead of a constant value (as in 

the Henkey criterion). For anisotropy there is not such connection be­

cause the coupling of strengths need not be the same as given by the 

deviator stresses, so the Hill- and Hoffmann-equations are special ca­

ses of orthotropic strengths. "''''• 

The Hill equation: 2f (o) = A^ (02-03)2+A2 (0^-02) + A3 (0^^-03) + 

2A,, 0,, + 2Ap- On + 2Ac On = 1 has 6 constants and the surface is deter-4 4 5 5 6 6 

mined by the 3 principal yield stresses (as for isotropy) and also by 

the 3 directions of the principal strengths with respect to the mate­

rial axes because these strengths are not necessarily along the material 

axes. „.'V 

The equation contains a number of conditions. .•• 

Because of orthotropic symmetry of the material, the positive and nega­

tive shear strengths along the material axes are equal. This is given in 

the last 3 terms of the Hill equation. The first 3 terms contain 3 con­

ditions of equal yield stress in tension and compression, and 3 orienta­

tions of the surface by the given values of the coupling terras of the 

normal stresses. In other words: a general quadratic orthotropic sur­

face is determined by 12 constants. 

These are the nine independent strength components (3 uniaxial tensile 

strengths; 3 uniaxial compressive strengths; 3 pure shear strengths) 
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and the 3 angles of orientation of the orthogonal surface with respect 

to the material axes. 

e Hoffmann equation: B^ (Ö2-O3) +B (0^-03) +B (0^-02) +B O3 + Th 
2 ^2 ~ b 

B^ O^ + Bn O. +B^ O- + Br, On + B„ of = 1 has 9 constants because now ten-
D 2 b l / 0 öD y4 

sion- and compression-strengths are different. The 3 special orienta­

tions of the Hill surface are however, retained. 

As seen before, there is no coercive reason to do this. So all the 12 

constants of the general form of a quadratic orthotropic surface 

2 2 2 

^4-Y^)^<^24-Y^^^^3^|-^^ + xé-+YT^^zl^^2F^2 ̂ 1 ̂ 2 + 
^2 „2 2 
a a a 

+ 2F23 "2 °3^2F^3 O^ 0 3 + — t — + -^ = 1 

^4 ^5 ^6 

are independent material properties, and beside the strengths X, X', Y, 

... etc, also the values of F^2 9 F205 F.̂  „ have to be measured. 

The potential energy function can be found by the principle of virtual 

works: cj) = 6w^ ' = 6w * + 6W ', variatina 6e as virtual 
P P . P 

plastic deformation (e. = A. £ ) and letting E ->- 0 for beginning of 

flow. Optimization of the function with respect to the displacements 

(A.) gives an unique, energetically feasible value of the starting of 

yielding. 

Another approach is known from thermodynamics. 

It is demonstrated there, that at flow, for sufficient small variations 

to get a linear irriversible proces, and Onsagers principle is appropri­

ate, a function \p exists so that: 

a.. = — p - (see p.e. [10]) 
13 '̂ •P 9e. . 

ID 

The inverse relation is the plactic potential function: 9, being identi­

cal to the yield function at flow (for an isotherm proces) and for wich: 

^^ij - 9̂ 77 • ̂ ^ 
1] 

the normality rule applies. 

2.1.2. Distortional energy theory 

An extension of the distortional energy theory has been given by Norris 

for a special form of orthotropy. 
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Fig. 13. 

With the scheme of the material as rectangular prisma­

tic voids with isotropic walls, he calculated the dis­

torsional energy for proportional loading and found 3 

Mises type equations for each set of walls; 

2 2 2 

! i ! i ^ !2 ^6 ^ 
X2 ^ Y2 s f 

2 2 2 
S ^ 3 _ ^ ^ ^ ^ 
Z2" 2X % 2 % 2 - l 

2 2 i 

X2 Y 2 " ^^ % 2 -
b 

2 2 2 

!2 ! i^ l3 \ . 
Y 2 " Y>̂  X 2 % 2 -

or for plane stress: 

rP- r,2 
°2 ° 1 

2 2 
Y X 

Z = / P A S,, = /P^c Sn = / F x Sc 
4 0 6 i so t rop ic Henkey y i e ld (If: X = Y ; 

criterium). 

Because there is a difference in compressional- and tensional-strengths 

we have to assume different critical energies for tension and compres­

sion and the only right interpretation of the Norris equations is to 

give different equations for each stress-quadrant. For instance for com­

pression-tension: 

^1^2 
XY' 2 2 

(Y') (S')^ 
=1 etc. 

O^ = Og = 0. This is given in fig. 12 for ö„ = o, 

An experimental verification of this difference for tension and compres­

sion is p.e. given in [14]. 

As an extension of the Norris model we can assume an armature in the walls 

along the material axes, not interacting with each others like in concrete. 

Adding the energies of the armature we get the more general form: 

2 • . 2 2 
o^ a^ Og 4, 

-2 + F^2 ^1 °2 +-2 +72 = 1 ^*°- . ;; :. -
X Y S n 

If we now assume i n i t i a l s t r e s s e s in the armature to give the mater ia l 
X—Y e q u a l s t r e n g t h f o r t e n s i o n and compress ion ( e . g . i n i t i a l s t r e s s o . -—ry-; 

X+Y t e n s i l e s t r e n g t h o. = -̂ 5—= - o ^ o, + o . = X; 0 . - o = -Y) , we have 

and g e t t h e form: 

2 2 
1 1 1 1 ^1 °2 

^ (X-Xr)+C72 ( y - r ^ + l ^ + Y r +^12 ^1 ° 2 + - = 1 
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^ 

1/ 

If there are other interactions of walls we finally get 

the three-dimensional equations like eq. 14 (§ 1) to be 

the critical distorsional energy equation for an ortho­

tropic material like wood. 

Fig. 14. 

Hardening rules 

Wood under compression exhibits plastic flow properties. 

For tension, under certain operating conditions (e.g. impact), elastic de­

formation and brittle failures are more common. 

However, for the usual loading conditions, the range of stable crack pro­

pagation is large enough to make an elastic-plastic description possible 

for tension. 

For this reason, the limit analysis methods are in general applicable to 

wood (equilibrium method, etc.). 

Because there is more plasticity in compression than in tension, the yield 

surface gets not only an expansion by hardening (like isotropic hardening) 

but also a translation (like kinematic hardening) and, as can be seen in 

fig. 9, also the shape of the surface changes. But the surface remains 

determined by the 12 independent strength components and it is necessary 

to know the hardening properties of these strength components. 

Giving the loading function: 2f ({o}, O ) = F. O. + F.. ö. ö. = 1, with 
° ^ ' u i i i j i j 

{a} the stress vector and 0 the yield constants (X, Y, X', F.,25 S^ etc.) 

the relation between stresses and total strains: 

{do} = [S^^]{de} ep can be found 

{de} = {de^} + {deP} with an elastic- and a plastic part 

Because of the associative flow rule, wich states that the plastic strain 

increment is perpendicular to the yield surface f: a£°=<3A j x-^i 

{do} = [S ] {dE®} '5 \^e. el̂ t̂fc pft ô •, 

{de} = [S^] ^ {do} + dA {—-} e do 

or, on mu 
9f T 

Itiplication by i-^} [S ] 
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4o->' [ S j { d c } = {| |} {do} + dA { | i } ' [ S J { | | } 
e 

Now for flow 2 F = 1, and for no unloading df = 0, sc 

-df, 8P dF = 0 = {4^} {do} + J f . do o r 
da da u 

u 
{ § } {do} 4 / - do = A dA, do u 

and t h e above e q u a t i o n becomes: 

{ | | } [S ] {dc} = (A + {yj} [Sg] { | | } ) dA and {de} i s found from: 

1 .,_. . .SF. U L U e i i ^ {de} = [ S ^ ] " ^ {do} + {-^} 

M u l t i p l i c a t i o n by S and r e a r r a n g i n g g i v e s ; 

{do} = [ s j {de} = [S^^] { d t } ep 

1 9f 
A = - T^ TT— do i s de te rmined by t h e measured h a r d e n i n g d i a g r a m s : dA dO u & fc 

u 
do = H de wi th a r c t g (H) as s l o p e of t h e o - e d i ag ram. Because de u u u ^ ^ u u ^ u 

i s t h e p l a s t i c flow of t h e s p e c i a l c a se of an u n i a x i a l l o a d i n g , t h e n o r ­

m a l i t y r u l e must a l s o be v a l i d and 

de dA df 
1B~ 

-dA TT— and s o : 
do 

A = - - ^ ^ H de = ( ^ ) H 
dA do U U do U 

For a weak h a r d e n i n g ca se we can make t h e f o l l o w i n g a p p r o x i m a t i o n : 

[S ] = 
e p ' 

[ s , ] -
[ ^ H | ^ } { | | } [ S ^ ] 

^^ î̂ 'fvC^ 
A [S^] 

^+^i>' t̂ e] # 
-l^fr-^- • 

A [S ] 
[S ] ( ^ ) H e dO u ___ u 

{ i f .} re 1 { i£ } {M.] re 1 { ^ > 
= [S ] X s c a l a r e 
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and {de} ~ {de }. So {do} is found by reduced elastic stiffness factors, 

depending on the state of stress. 

The values of H can be found by uni-axial tests in the main directions. 

For the compression test _|_ e.g. is: (o to 0 = 0): 

2F= F. O.+F.. o. Ö. =(^-^) a^+^^+(--YT) "s+YT + etc. 

^ 
O = -X' X X' XX' o^ = -X' 

"̂  Y Y' Z Z' ~ X X' Y Y' 

i f Z i s the s t rong d i r e c t i o n . 

'Il> 

1 (1 J_s 
2 4"*" X'^ 

1 ( 1 - J _ ) 
2 T Y' 

~0 

and: [S ]{^} = e 9o 

fs J = 

^ 1 1 

^12 

^13 
0 

0 

^12 

S22 

^23 
0 

0 

^13 

^23 

^33 
0 

0 

0 

0 

0 

^44 
0 

0 

0 

0 

0 

S55 

0 

0 

0 

0 

0 

66 

^11 ,1 J_. £12 / l ,_J_x 
2 ^Y7 X' ^ '^ 2 ^Y Y' ' 

f l 2 1 _1_ f22 .j^_J_^, 
2 ^X^ X' ' '^ 2 W Y' '̂  

f l 3 ,1 J^. ^23 A_J_^ 
2 4"^ X' ^ "̂  2 4 Y' "̂  with 

{ M / r s ] { ^ } - ^ ( i - - ^ ) % ^9o^ L^e-'^9o^ 4 4 X'^ ^ 

2 4 "*" X' ^ ^ V'•' u ^00 W v'-^ Y Y' 4 22 'Y Y' 

9o u 

2 2 
1 ^1 ^1 
— (- - ) H 
4 2 2 1 X 

X X X̂  
a. = - X ' 

^ ^ ^ 

2 2 

X' X ( X ' ) 7 ^ ^ "x-
a, = -X' 

9 9 ^ 

4 "• 9 2'' " X ^ 4 ^ X' X^ X' 4 "-X' X^ " x ' 
A A 

do u i f J - + l ) H 
4 4 ' ^ X-̂  X' 

r 9 f J r ^ , r 9 F ; " ^ l l ,1 1,2 2^2 1 I ' ^ ' l ^ ^ 1 1 
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hl (1 

[V 
'12 1 1 1 1 22 1 1 -U J. 
r - . ( - - — ) / ( _ + ̂ ) + _ . ( _ - _ ) /(^ + ̂ ) ) 

1 1 2 " S ^ ^ ( 1 - Y ) 

do^ 

O 

0 

O 
= [s J e-- S^^ ( 1 - Y ) 

f ^ 

de^ 

de2 

^^3 
0 
• 

0 

J 

*-^-

r "i 

d e , 

de2 

de3 

0 

0 

0 

^ 

: s j 

do^ 

o 

o 
11 

( 1 - Y ) 

o r : 

d e , = ^11 ^ ^ 
11 (1 - Y ) w i th 

'11 

S22 S23 

^23 ^33 

S c; c; 
11 ^12 ^13 

S,2 S22 ^23 

^13 ^23 ^33 

From t h e measured v a l u e s { d e } ; [S ] ; do. , , t h e v a l u e of H^, can be found 
€ X A 

using least squares with the other equations in de2 and de3 too. 

It is seen that the determination of [S ] is a very lengthy and labo­

rious task, only suitable for digital computation. 

Another possibility is the elastic-fully plastic approximation with: 

{deP} =dA {||} (so A = H = 0) 

In this case, for o^ = -X' and other 0. , , = 0 is: 
1 1 ? 1 

2(r 

de, = dA t (X ~ x^ "*" XX^^^ " '^^ ^X~ lo'x'^ ~ ~^^ >̂r'""'"x̂  
o = -X' 

and: 

So 

1 1 2^2 1 1 
de2 = dA [ 1 - ^ + ̂ ] =dA (i-J^) 

^2 = ° . - • . • " 

J c 1 a. 1> 
^ 1 " 3<^ x^ 
-rr~ - — z 3— is normal to the surface of fig. 12 in point; 

Y Y' 

(o, = -X'; O2 = 0) as expected. 

It is intended to measure whether this approach is sufficient. 
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2.3. Some remarks on criteria based on fracture mechanics 

The most simple criteria used for orhotropy are the maximum stress theo­

ry and the maximum strain theory. 

The maximum strain theory, as extension of St. Venants theory leads to 

contradictions (see [2]). 

The maximum stress theory states, for orthotropic materials, that the 

strength is reached, when any stress along the natural axes reaches its 

maximum value. 

This theory neglects interaction of stresses and the domain where this 

can approximately be right is given by fracture mechanics because only 

the stresses in one plane are magnified by a flat crack and one single 

principal tensile strength may determine the total strength. 

The strength is now a plane problem determined by Mohr's envelop. If we 

look at the maximum stresses lying along the crack boundary, the strength 

can be determined by the principal tensile stress, being the only magni­

fied stress. So whatever the fracture criterion is, there is only one 

stress (others being neglectible) determining the strength. If we do the 

variable transformation of appendix 1, we can use the isotropic solution 

of the crack problem for orthotropic material. 

For a crack propagating _[_ to the direction of the maximum tensile stress 

along the boundary litt. [12] p. 255 gives: 

2 o 2 o 
-1-5.5^ = 1 or (f) .5^=1 
(20^) t u t 

The form remains the same if we transform this back to the original va­

riables. So for not collinear crack propagation depending on the uniaxial 

tensile strength (along the boundary of the flat elliptical crack) we 

have 

Kj hj 2 _ 

'̂ Ic ^IIc 

This is measured by Chow and Woo [13] for a light wood species and is al-
T / ^ 

so measured in the radial plane of pine (see §1, fig. 10: — ~ V 1 - -TT-) • 
u 

So It IS not necessary to assume friction for the shear strength increase 

//by compression _j_(̂ [13] Jaegei', Keenanl. It is noticed that, despite of 

some compression, failure can be in the opening mode, so the failure is 

not by shear (and friction) but by non-collinear crack propagation and 

' KTT ' is dependent on K-n and is smaller than the real value of KT-^ IIc ^ Ic lie 
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(This is often found in tests see [13] J.F. Murphy p.e.). ' 
O , 

For collinear crack-propagation is: —i- = 1 and only for tension _J_ to 

the crack this will be a principal stress. So for combinations of shear 

and tension, both stresses are magnified and we have to know the fai­

lure criterion. For this, sometimes the maximum stress criterion: 

S hi 
< 1- — - — ^ 1 

Ic IIc 

is used, or the linear combination: 

'^ + ̂  < 1 
Ic IIc 

to account for the smaller "K " of non-collinear crack propagation and 

to maintain the separated measured real K .̂  in this fracture criterion. 

However, the real K from collinear propagation due to pure shear along 

the grain can only be a local strength increase in timber because of faults. 

deviations of the grain directions, knots etc. 

If it is assumed (as usual for wood) that the initial crack is in a plane 

along the grain (orJ_) and also the propagation is collinear (along the 

grain (or _j_) the fracture criterion for the region around the crack tip 

must be the same as the macro-criterion expressed in stresses in the ma­

terial axes and must have the form of the (extended) plane Norris equa­

tions.(uUe e.<\. I'̂  ̂ l) 

However, non-collinear crack propagation is apparent and also the com­

pression stress around the crack can be high, giving stress redistri­

bution around the crack by layer-buckling etc. , so using the concept of 

the critical strain-energy-density at the borders of the plastified 

areas, and assuming randomly oriented cracks, we get a similar 3-dimen-

sional, quadratic polynome as given in §1 and §2 as expansion of the 

failure criterion. 

The maximum stress criterion can not be made entirely adequate as can 

be seen in the next schematic graphs of the strengths, and in fig. 12 

(and 12'). ' . 
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Solid lines : polynomial equation 

Dashed lines: maximum stress theory 

F i g . 15 . 

/ 
folyriöiMial «^n(U-ü»n 

T Mok. strt'SS Hie^ry 

Fig. 12'. 

2.4. Layer buckling 

Interation equations of buckling contain linear and quadratic terms, p.e. 

2 Ô  O, 

< ï ^ ' ̂ x ^ + T-
2 

cr 
Y' 

cr cr 
1 

similar as for crack propagation (§ 2.3), 
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However there will always be interaction with crack propagation and the 

buckled areas increase the "plastified" zone around the crack tips so a 

more general interaction equation (like eq. 14) is probable. 

If buckling is the ultimate condition for compressional failure of wood, 

there will be no strong strength increase if e = e .j. = e.̂ .|.-, as expec­

ted from plasticity theory, because the real stresses in the cell walls 

are plane and one real e is zero. 

2.5. Viscous properties 

Wood has viscous properties and is influenced by time, temperature, mois­

ture etc. .' ;• 

All those influences can be taken into account in the strength parameters. 

So e.g. the uni-axial strength criterion becomes: •, 

° i ^x(t) i r m ^ ^ x(t) . x'(t) " ^ 

where X and X' depend on time t, with possible different rates of creep 

and different long term strengths. , j 

So far, there are no observations, that contradict this model. 

2.6. Conclusion on physical failure criteria ' '• 

It is demonstrated that the general orthotropic quadratic polynomial 

stress equation represents a potential energy function or the critical 

distortional energy function for an orthotropic material. 

The polynomial expansion of that function 9 will have the orthotropic 

basis for wood: 

2 2 2 
9 (o,; O2; a • o ; o ; o ) (see [9]; orthogonal planes x, = 0; X2 = 0) 

and for a transverse isotropic approximation (or lower bound § 1.3): 

2 2 2 
6 (o,; O2 + Ö3; O2 O3 - a^; o^ + Og; det. (ö^^ )•) in general or: 

2 2 
6 (I-i; I2' "'•3' "^3' *̂ 4 """ "̂ 5̂  with I,, I2, lo fhe 3 stress invariants 

(symmetry about X-,-axis ) 

For plane stress: O3 - '^u = ̂ c = 09 "the polynomial basis for both cases 

(orthotropic and transverse isotropic) is: . .* -
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2 
9 (o,', O2', Og) or in general: 

9 = C, O, + C2 O2 + i C,, o2 + i C22 ol r C,2 ^1 °2 + T Cgg o2 

It is shown in § 1 (1.2.4. and 1.2.5.) that there is some influence of 

higher order terms, probably due to some non-linear elasticity and plas­

ticity, and some deviation from orthogonal strength behaviour. The qua­

dratic polynomium is an inscribed surface or lower bound of the strength. 

We can only expect that some function of the distorsional energy gets a 

critical value. It is known that for wood in the elastic stage there is aUo 

some deviation from orthotropic behaviour. For practice however, the as­

sumption of orthotropic elastic- and plastic behaviour with critical dis­

tortional energy for flow is a sufficient approximation. 

The best, we can regard 9 as a potential energy function. 

Because the polynomium is an expansion of the real yield surface, higher 

order terms are possible depending on the form of the surface (and flow 

rules). As shown above this surface will be a complicated function of all 

stress invariants. 

From the model of non-collinear crack propagation of randomly oriented 

cracks we can also expect to have one mean pure shearing strength in the 

main planes determined by the tensile strength near the crack tips (so 

Cg = C,g = C2g = 0 but C gg ^ 0 etc., see 1.1.; 1.2.4. and 2.3.) but also 

to have an interaction between shear- and normal-strengths. 

In general the conclusions of § 1.3. are confirmed. 
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Variable transformation for orthotripic plane problems 

For plane stress is Hooke's law; 

Appendix 1 

'11 

'22 

2e 12 

1 12 

^11 ^11 

^21 1 

^22 ^22 

12 

11 

22 

12 

Introducing new coordinates as variable transformation: 

X = x,//6 ; y = X2 v̂5 

the stresses and strains become 

XX 11' 
e = e,„ 
xy 12 

/5 ; a - a 6 ; o = a ; e = e 6 ; e = e /6 ; 
VV 22 ' xy 12 ' XX 11 ' yy 22 ' xy yy 

Hooke's law becomes; 

XX 

yy 

2e 

1_ 
E 

-V O 

-V 1 O 

O O 2(K+v) 

yy 

xy 

(1) 

with: 6 = E,,/E,2 " '*'i2'̂ 2̂1 (symmetry) 

E = /E,, E22 

^ "- ''^2 ^21 

K = i v^ ^ 
2 ^11 "̂ 22 'G 

Eoo (-, 

V V V v„ 
12 21, . ̂, 12 21 

) with F F 
12 11 22 

F F 
^11 ^22 

(As indication for wood: 6 ~ K ~ 2; for isotropy: 6 = K = 1), 
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For plane stress and: 

£. V ^11 ^22 / V + ^ 3 ^32^(^21+^23 ^31^ 
" "^(l-v^ v,,)(l-v,, V,J' ^ 

13 31' 23 32' 
(1-v V )(l-v V ) ' 

13 31-̂ -̂̂  23 32^ 

,4 ^11 1 - ^23 ^32 , 1 , 1 ^2+^13 ^32 ^21+^23 ^31, 

^ = Ë Z ^ 1 - v . . V . J '̂  = 2 ^ ^677 É : : — " — Ë : ^ "22 ^ "13 '33 

for plane strain 

12 11 •̂ 22 

The Airy stress function (}> is the same for the original- and transformed 

variables, so for equilibrium: ^ • 

2 2 2 
_ 9 ( { ) _ _ 9 < I ' . _ 9 0 

""̂ "̂  ' 9 7 ' ""̂ ^ " 8 ? ' ''''^ ~~ ~ '^^^ 

and for compatibility: 

ill + 2K -p-^ -̂  ̂ ) = 0 
9x 9x 9y 9y 

Now eq. (1) can be written in the isotropic form: 

(2) 

(3) 

XX 

yy 

2c' 
xy 

1 
E 

-V 0 

0 0 2(l+v) 

yy 

o' 
xy 

1 + V •.• 
With o' = 0 and e' = e ——•—- the isotropic solution of è is a lower 

xy xy xy xy K + V ^ 
bound because the solution satisfies the equilibrium conditions, but is 

K + V 
not compatible. With e' = e and O' - - , ^ 

^ xy xy xy 1 + V xy • 
the solution satis­

fies compatibility but not the equilibrium conditions, thus is an upper 

bound solution. 

For both cases the normal stresses are the same. So if there is a maxi­

mum normal ultimate stress criterium, the isotropic value of (}) gives a 

possible solution what is the right value of the ultimate state (with 

equal upper- and lower bounds). 

The calculated ultimate state differs an internal equilibrium system from 

the real ultimate state without affecting the ultimate value. 

The same can be stated for an ultimate shear stress criterion. 
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The internal equilibrium system affects only the normal stresses in this 

case. 

So.for a proper geometric- and material-transformation the solution of 

the crack-problem of an orthotropic material is the same as for an iso­

tropic material. 
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