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Introduction

The concept of the yield surface is known from classical plasticity theo-
ry. For brittle fracture the meaning of the yield envelope is, that out-
side this envelope, continuous degradation of strength properties occur.
One way to describe this surface is to look at particular mechanisms,
f.i. plastic yielding, crack propagation, microbuckling, layer breaks
and so on. This is shortly discussed in & 2. This approach is compli-
cated by e.g. interacting mechanisms, and cracks in discrete interac-
ting layers; so only a tendency can be given.

Another possibility is to describe the surface from test values. This

is done for pine in § 1. The used tensor polynomial criterion meets the
requirement of invariance, contains the properties of stress tensors,
so can be regarded as a polynomial expansion of the yield surface.
Therefore an accurate description is possible using as much terms as
necessary. It is demonstrated for pine that one criterion can give all
the variations in strength in the different planes by any stress combi-
nation, at any plane.

So far, the existing criteria apply only in certain circumstances and
limited regions, and only in the main material planes.

The, at first glance curious behaviour of the off-grain-axis strength
(p.e. fig. 8), is entirely determined by tensor-transformulations.

The general failure criterion contains some local strength increases and
deviations from orthogonal strength behaviour. Therefore the critical
distorsional energy theorem is only approximately true. For practice
however, the oriéntation of the tangential and radial planes are not
known, so a lower bound criterion has to be used that will be trans-
verse isotropic depending on the weekest plane (see conclusion § 1.3.
and § 2.6.).

The criterion for clear wood can also be used to investigate the influ-
ence of faults and knots in timber theoretically as next step.

It is intended to do tests in tri-axial compression and compression
with low tension to measure the order of deviations from the simplest
equation; the hardening properties and the influence of time.

This can be done by a multi-axial cell (see [15]).




1.

Phenomenological failure criteria

General properties of initial yield surfaces

Because the many aspects of failure and the many possible mechanisms

in different circumstances it seems to be useful to describe a yield
surface as an inscribed envelope of those possible yield- and fracture-
surfaces based on the appropriate, measured, independent strength com-
ponents.

General expressions of the yield surface in strength tensors are men-
tioned in [1]: in the powerform:
B

(0]
(Fi - oi) + (Fij o4 Oj) + (Fijk

"
=

¥
o Oj ok) + S
that can be regarded as a general form on a polynomial basis known from

invariant theory [9] or easier, and not less general in possibilities of

fitting, in the tensor polynomial form:

¥. 0, + F,. 0, . + F..
> R | a1y e

5 i3k O3 O3 Op * «vv = f G4k =1,2,3 ... B),

J

that can be regarded as a general expansion of the real yield surface.

The polynomial basis can be derived from the following considerations of
symmetry.

For wood the principal directions of strength may be regarded to be ortho-
gonal and so the higher order terms Fijk may be omitted and the simplest

form of the failure surface in the stress space becomes:

Fi o, + Fij o4 oj =1 (i, j, k=152 .wa 6) (1)

For reasons of energetic reciprocity [5] Fij = Fji (i # j) and because

wood can also be regarded to be orthotropic in the main planes, the in-

teraction between the shear stresses can be disregarded Fij =0 (i # 3

i, 3 =4, 5, 6) so e.g. (1) is for a plane stress state in p.e. the 1-2

plane:

+ F

Fj o, +Fo0 12 91 9g + Fyp 0y + Fig

199 +F, 05+ Fg 0O +Fyy 0

+2F 0y 0+ 2Fy 0,006 =1 ("




For the same reasons of orthotropic symmetry in the main planes, thus
expressed in the material axes (along the grain - tangential - radial
directions) the shear strength has to be identical in positive and ne-
gative direction, so odd-order terms of Og are zero and the coupling
between normal- and shear strength vanish: F16 =Fpg = Fg = 0 and equa-
tion (1) becomes:

2

6 +2F,.. 0.0 2 + F =1 ()

P.: Oy 4+ Fy @ 1 12 91 Oy + F22 02

+ Fll
For a thermodynamic real surface (i.e. positive strain energy) the va-
lues: F.. must be positive and also the failure surface cannot be open-
ended (= hyperboloid) so the interaction terms are constrained to:

2 : ’ . - 2
Fii ij > Pi. (no summation convention) or in (1'"): F%l F22 - Fl2 >0 (2)
(Fll Fop = F12 is a parabolic surface and Fiq Fpp < Fip is hyperbolic).

Eq. (1) can also be given in strain components:
B By * Bas By €3 5 1 (3)

with: G. = F_ S . 3 G,. = F S . S . 3 S.. = Elastic stiffness matrix
i m “mi ij mn “mi “nj ij

being orthotropic too.

For the uniaxial tensile strength X along the grain (= parallel to the

l-axis) eq. (1") is: (o6 =0, = 0).

2
F oQ-fF 0, =1 with 0, =X F X21-F X =1
11 P17 71 P1 T WARR O 24880 Eg 1% 7
and for uniaxial compression along the same direction: (0l = -X' as com-

pression strength)

2
' = 1 =
Fll (X") Fl X' =1

Solving the two equations in Fiq and Fy gives:

A 211
Fyg =ggrand §y =5~ 3r
In the same manner is:
1 11
P22 A and F2 =3 val




For pure shear (O1 =0, = 0) eq. (1") is with Og = S as shear strength:

2

1
F = — .
66

S?

So for plane failure in the tangential plane (1") is:

02 02 02
1 1 11 1 3 g
0 X 5t Gy tygrt2 Fip 01 Ot g +"S—2 sl (%)

F12 has to be measured in bi-axial tests, because in an uni-axial test

the influence of Fi, is small and because Fio is very sensitive to small

errors in X, Y and S. From the stability condition (2):

- 1 < F..<+ 1 (~ ot for wood)
Y XX' YV! 12 Y XX' YY' XY

In the criteria of Norris [2] or of Hill or Hoffman [3]: F12 = 5y OF
F., = - E-(—£—+——£—— QL), and is not an independant quantity.

12 2 X2 Y2 Z2
It is also suggested to ignore Fis i.e. Fi, =0 [4] for highly orthotro-

pic materials (like wood is,giving errors < ~ 20%, // grain).

Because the influence of Fio is small, analytical failure is almost in-
dependent of the type of failure criterion used for most types of test
results.

Fl2 determines 6, the rotation of the
failure-ellipsoid with respect to the

material-axes. For wood this can be

important for stresses_J_ grain.

Fig. 1. (06: 0).

Transformation of the strength tensors:

In the x', y' codrdinates of fig. 2 the strength tensors are :

11 Fi2 Fis Fiy Fis Fi |
Foo Fag Fou Fis Fog
e o F3s Fau F35 Fi6 |
5t Fiy Fiys Fiig
F5s Fig

l (F' F' F'_F' F' F!

. ¥ ) M M W
D= Ul= = W= N = 2=

F'
L ) symmetry 66




The principal strength components are (in x, y):

Ay [Py Fip Py 0 000
F2 F22 F23 0 0 0
. F3 » e ) F33 0 0 0 .
i o0 > Y457 Fu, 0 O
0 F55 0
sym.
S Fee Fig.
Transformation about the 3-axis gives:
o Fl + FQ Fl = F = i
1~ 72 *tT 3 ¢
F! = it = b in 26
2 -7 2 2 °
o _ ;
Fg = - (Fy F,) sin 26
v Cp' ' Fig.
F=F P k=0 . g
invariant | cos 20 [sin 20 |cos 46 sin 46
' ‘
.
gFll Il 12 0 13 0
\l -
IF3, I, I, 0 I, 0 .
|F? - -
F12 Iu 0 0 13 0 Il )
1 - 9 =
F66 415 0 0 4I3 0 o
' _ _ =
‘FlG 0 0 I2 0 213 I3 )
¥ _ -
F26 @ 0 I2 0 +QI3 Iu ]
; =
FlS I6 I7 0 0 0 IS )
) _ =
F23 I6 I7 0 0 0 I6 i
' _ —
F36 0 0 I7 0 0 I7 )
X =
FHH 18 I9 0 0 0 I8 ]
v N =
'F55, 18 I9 0 0 0 9
L
F45 0 0 I9 0 0
N
Ela!  Fag 0 0 0 0

. 1 -
Read p.e.: Fll = Il + I, cos 26 + I3 cos 46

Sign convention for shear:

If an outward normal of a plane points to a positive direction, the plane
is positive, and if on a positive plane the stress component acts in the

positive codrdinate directions, this component is positive.

2. Positive rotation
about the main

3-axis (z-axis).

I: T
05 'S/ tension is
Y positive

Positive signs in
right handed coor-

dinate system.

(3Fll-+3F22-+2F12-+P66)/8
(F11 = Fpp)/2
(Fyq+Fpp=2F15 - Fgg)/8
(IF11 +Fyp +6F;, - Fgg)/8
(F1g +Fyp = 2F;, +Fgp)/8
(Fy5+Fp3)/2
(Fy5-Fp3)/2
(F4u+F55)/2
(Fyy = Fgg)/2




On a negative plane, the stress in negative codrdinate direction is po-
sitive.
Outer the main directions there is a difference in positive and negative

shear strength, so a sign convention is necessary.

Transformation is possible in two ways: The stress components can be

transformed to the material-symmetry axes, so eq. (1'") becomes:

2 2 2
1 1 { ' 1 1 ' =
Fl o] +F2 02 +Fll(ol) +2F12 ol 02 +F22(02) +F66(o6) 1 (5)

Or the material symmetry axes can be rotated leaving the stress compo-

nents unchanged so (1'") is:

2 2 2
1 | ' 1 1 1 1
Pl 01+F2 02+F6 06 +Fll crl+‘£22 02+F66 o6+2}“12 ol 02+

1 1 .
+2F16 oy 06+2F26 0, Og = 1 (6)

Verification by test-results

To demonstrate the possibility of fitting test results to the simple

failure criterion (1), strength values are taken from [6].

Shear perpendicular to the grain (rolling shear)

In most shear-test the strength is governed by the bending strength per-
pendicular to the grain and the high discontimity

IZ%! peaks at the ends of the shearing plane. So the

Ihnﬁﬂjsku% strength is a lower bound of a pre-cracked speci-

_”Tq F?*"’ mum. These effects are reduced in the tests men-
tioned in [6] page 904 by fitting the test-pieces
Fig. 4. precisely to the openings of the test-blocks. Only
if the grain direction is parallel to the shear
Auéaj *J' ) plane, it can be expected that additional stresses
‘%Q\ \\\\ | have a minor influence on the shear strength. So
77 3 only these cases are considered here.

7 Fpartly com-
pression failure

Fig. 5. exeluded test.

For pure shear eq. (6) becomes (0l =0, = 0):

2
FI l Fl - ]




In the main planes (tangential- and radial-plane), there is no diffe-
rence in shear strength in one direction and the opposite direction so
Fe = 0 and if there is a shear stress in the tangential plane, the
same stress is in the radial plane and the weakest plane controls the

shearing strength so for 6 = 0 and 6 = % eq. (7) is:

1

c. =1~>F = —
6 6

6 6 6 272

18-36 kgf/cm2 (see [6] page 906

with Og = 27 kgf/ch as median of Og
for pine).

For 6 = %,a difference in positive and negative shear strength can be
exptected, because for a shear stress in one direction there is a ten-
sile stress in the tangential plane, and for shear in the opposite di-
rection there is a tensile stress in the stronger radial plane.

In the double shear test at 45 degrees one plane has positive shear and
the other,anegative shear and failure is first in the weakest plane. So

only the negative shear-strength is measured. From [6] page 906 at 8 = %:

2 LT 4 2
1 1 - = - iR — -
F6 06+F66 06—1 =¥ (Fl FQ)(Sln 2) 21,5+8 (F11+P22 2F12+F66)(21’5_)
-2 (F +F, -2F, -F. )(cos m)(21,5)%=1
8 11 22 12 66 2
T, _ 2 . 2
as 0g (7) = 21,5 kgf/cm” as median of Og = 18-25 kgf/cm
1 1 1 1 2,1 1 _
215 Rogr Ty g (LS gy o ) B L
On page 748 of [6] values are given of X' = 60 kgf/cm2 als yield compres-
sion stress in the tangential plane (6 = 0) and Y' = 50 kgf/cm2 in the
radial plane. The tensile strengths in the same planes can be taken to
about 34 kgf/cm2 and 45 kgf/cm2 (page 670,
809)
1_1_1,1 8. 1
>+ 20,5 p-groastEe) t (21,5 (g an t
1
' i 5 [ + ———=-2F..) = 1
0 30° 45° 60" soa 45.50 12
Fig. 6. pine compression L + 0,226 +0,432-924,5 F,, =1+F,,=-3,7 . 10 '
_ 1 _ -4
F12> "F13 Fpp = ~Veg3r w5 50 = 4567 - 107 (o.k.
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2.

2.

With F12 = -3,7 . 10_L+ the second root of the

. -21.5 =3 e ~ 2
“‘~———q—————”‘ﬂ’1 equation is Oy = 27,8 kgf/cm”.
GZ=t5m\ kqf lem® However, as stated before, the value of F12 is
o 45° ol  very sensitive for errors e.g. if Og = =20,5
(i.s.0.: -21,5) ~» Fl2 = 44,67 .lO_L+ i.e. just the
+2% 218 ‘—;ﬁ upper bound of F and the positive root is

+26,2 kgf/cm . 12 has to be measured in a bi-
Fig. 7. Equal test- and| axial normal stress test, to give the best value.
theory-values. The existence of the higher positive shear than
the negative shear is demonstrated in off-axes
double shear tests where only one side is the testpiece is failing ([6]
page 897).
For praxis it is necessary to give one value of rolling shear. The test
results: 06 (6 = 0) = 18-36 kgf/cmz; 06 (6 = 45) = 18-25 kgf/cm2 show
that this value can be based on some lower bound, p.e. Og = 18 kgf/cm2
or better, depending on the worst variance. In this case also bounds on

the values of the ten51le— and_compression-strengths _L_are necessary:
_F11 4+ Fop - Feg

Fl = F, and Fl2 = 5 or:
R T S| 1.1 1 o4 \ o1
XOxr oy tyrclad Bty ety 5) With Fee = '
(t_ ) (t_ )
rol rol

o 7 - < .
eq becomes: T ¢ L

Uniaxial strengths _L_gpain

In fig. 6 (from [6] page 748) values are given for the off-axis uniaxial

compression strength perpendicular to the grain.

eq. (6) becomes with 0, = Og = O: Fil Oi + Fi g 51 or:
Ol(Fl ;-F2+P1;F2 o Qe)+oi(3Fll+3F228+ 2F12+F66 .
+Eé£;%fég-.cos 26 +Fil-fF22; 2F12-P66. cos 40 =1
For 6 =0° : o, F1+O<2> F,p=1>0 (X X,)+ CQ) X>l(, -1+001=X; Oy = X'
For 6 =90°: O30 F2+o§o F22=1—>090(%-—Y—1,)+o§0 3—{31{—,=1—>090:Y; ogoz—Y'
For 6 =30°: 030(% F1+E¢2—) “’50(1’% R +E1%2+1—6(5 F12+T36- Fo)o= 1

. 2
For 8 = 6o : 0, (4 Fi +2R) + g, (%1_ +2 Fy o+ é

©Fo 2 Fg) =




F F F & 2F F
e i %3 ..g “d1 F2a "1 ¥g8
Fore'”5'°u5(2+2)+°45(u m m |+)_1
-1 1 _1_ 1. -1 1.1 1" S S, -1 .
With: Hycsy~9 e "6 f Fa T Y 55750 % F11°60x3% b f22 5oxEs
1 -y

F.. =——= and the upper bound of F,,: F,, = 4,67 . 10 (see § 1.2.1.).

66 272 12 12 >

The following values are found, as roots of the equations, given in fig. 8.

b A better fit is possible by calculating the
main tensile strengths X and Y from the equa-
44 theory . g0
—4o -4 7 tions inserting some measured values -0,.,
= Test valuds [ 6] 3
ane p-348 _045 and _O6O with:
Compression L i
= V s <
e Fo=Vxwyxy (@D
o’ 30° 45° 60° 90°
Tensile L However, even with approximate values from
) incomparable tests, a good fit is possible.
3 B :
[6] P63 +A5 In [6] the tensile strength _Lvis mostly ta-
Fig. 8. Yield stresses. ken to be 1/2 to 3/4 times the compression

strength (being 60 kgf/cm2 see below) so
ﬂ ~ 30 to u5 kgf/cm2 and the radial tensile
strength is stated to be about 1,5 times
the tangential strength (= 45 kgf/cm2).

The value of 34 kgf/cm2 is given in [6] as

yield stress compr. the best value of the tangential tensile

T com?ﬁasﬁen3¥h” strength. (Probably the physical conditions

Fig. 9. as moisture content, density, volume factor,
are not very different in those tests).

In Fig. 9. ([6] page 721) it is seen that after first flow, hardening is

occurring and after some equal plastic deformation the stresses are almost

the same, independent of oriéntation.

So for porportional loading (in practice occurring) this constant stress

can be taken as strength value. Then F,, must be bounded too, giving:

. F11 + Fpo = Fgg

12 2
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This condition is the same as in § 1.2.1. for one value of rolling shear

strength and taking F, = F, because of § 1.2.1., eq. (6) becomes for this

case:
1 1 2,1 _ U 2
01(? $F9+ Gl(iiT) =1 (X= §-X x 30 kgf/em®)

So it is necessary to choose a constant lower bound of the tensile strength
too.
In [6] page 809, probably the lower bounds were taken as given in fig. 8,

so X' = -40 and X = 30 kgf/ch. In this case F., is a small quantity and

12
may be ignored because

- TipefonTes . Tee_ 1 1 . 31 atd o 2z
12~ 2 11 2 TRX 2 30x40 2
P 2T
rol rol

T, =v/30.20 = 2u,5 kgf/cm?

rol

It is seen in fig. 7 that this value is close to 21,5 and 27 kgf/ch, at
first flow.

Pure shear parallel to the grain

For a rotation about the 3-axis or the axis in the grain direction eq. (6)

becomes for pure shear in that direction:

F.,.+F F,, -F
2 Ly 55 Ly 55
] - > ] o
Fuu 04 =T “fith Fuq — 5 + 5 cos 260

Sor for

= 85 . e o [
6 =0~ Fuu =.F and for 6 = 90~ ~ Fuu = F55

Ly

In [6] page 906 and 907 the values are given as: 05 = 100,5 (89-112 kgf/cmz)
in the tangential plane, and 0, = 114,5 (110-119 kgf/cmz) in the radial

n
plane.
¢} Oy 2 2
At 6 = 457 0l+ (457) = 103 kgf/cm” (93-113 kgf/cm”).
F,, +F
Ll 55
Predicted from theory is F&u (45°) =—~——§———-=%-( : 5t g 2) = e =
(100,5)° (114,5) (106,8)
o 1 2
so 0, (45 ) = My = 106, 8 kgf/cm” .
VE}, (457)

This is close to the measured value of 103 kgf/cm2.




.2,

-

y - Py tFsg - Fog o - Fug o
ore genera i = 2 + 2 CcoSs > S1n .

So it is seen that the interaction value between 0, and 05: F ~ 0 as

m 45

expected from general considerations (§ 1.1).

Shear strength parallel to the grain with compression perpendicular to

the grain

The type of tests used in [6] give a higher shear strength than measured
in [7]. This is explained in § 2.3.

Tests from [7] show a deviation from orthogonal strengths. In these tests,
in the tangential plane, the influence of normal stress on the shear
"strength" is small. In the radial plane there is an increasing shear

"strength" with increasing compression stress normal to this plane (fig.

10). So coupling terms between 0, en Oy can not be neglected in this case.
Because the shear strength in the main planes is independent of the sign
of the stress, odd terms (p.e. Fes Flgo F26) disappear and higher order

terms must be used, and the failure surface becomes:

Fi Gy + Fes T3 O F Faus, Os Ts G, = 4
2 A i3 1 73 ijk i "3 "k

=F .. =F ... Further,

For symmetry reasons (see § 1.1) F. ki i

ik = Fixg T Fsxi
the cubic terms Fiii are redundand and can be omitted.

So with even-order terms in 0. the equation becomes for plane stress:

6
F. 0. +F. 0. +F 02+F 02+F 02+2F 0o, 0, +3F 020 +
1 1 2 2 11 71 22 72 66 6 12 71 "2 112 "1 "2
+ 3F 020 + 3F 2 S, o] 02-1
gzl Y3 ¥y 166 Y1 Y6 *Fues Y2 Y8 T

Because of minor interaction between 0, and 9, in the usual applied plane

1
fracture tests, and F can be neglected and in the tangential plane

Fi12 221

also F266 is small so there remain:

2 2 2 2 _
Fl 0y +F) Oy +Fy; 07 +Fy, 05+ Fge Op +2F, 0, 0, +3F 0 0, 0p =1 (8)
This surface has to be closedj so for 2 collinear loading paths, there are

only 2 distinct roots and taking the proportional loading path as:




As Og = sg A, the equation becomes:

1 1 2 2
3 2 2 2 2 2 "
3\ S, Sg F166.fx (Fll s]tFy, s, +2F , s, s, +Feg 86) + K(Ll sy ¥
+ F2 52) -1=0 or
3 2 -
a3>\ +a2)\ +al>\+ao-o
s
Substitution of A = z - s gives:
3 2
z" +3pz + 29 =0
with:
b - 3 (a2 )2 $ mai a, )3 a, a; . a
S R 5 q= -
3840498, 33y 6a2 233
For:p3 = —q2 there are two equal roots and a third root
3 3ﬁ 3ﬁ a, 3 a,
z,=-2 Yq and z2,=24 = Vq so: >\1=—2 q—-:a—&;;and >\2:/c_1‘—3—a—:;

For p3 < —q2 there are 3 different real roots (p, is negative than)

with the substitution kx = z or k3 x> + 3pkx + 2q = 0 and k = 2 /]p] this
3 q
- x +

5 -y = 0 and has the form:
4 V|p|

3
becomes: x~ -

> 1 .
sin3 o (T sin a + 7 sin 3 0L=0

So z = k sin o and sin 30 = —d— > z = Q/TET . sin E-arc sin (—=2 and
el i ol

a
2 / . 1 i
A =-=—= + 2/|p|.sin (5 arc sin (---—3 )
3a, 3 HIE4E

From the 3 roots (0 € a £ 2m) the negative one, and the smallest positive

one can be on the fracture plane.

3

Sop + q2 < 0 gives a bound of F The equal sign may be approached

166°
from the lower side to retain a closed surface as can be seen in the fol-
lowing example.

For 0, = 0 eq. (8) becomes:

F, O, + F 62 + F._ 0%+ 3F, .0, 02 =1 (9)

21 "1 66 6 166 "1 76
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Fitting this curve to the values of [7]
project A is only exactly possible when

w’:\F:£~ﬂasﬁ*1 i
wr X Y " ("dJ\.Hanz the tensile strength __L and the compres
$=0,335 sion strength _l_ are known.

| yralect: From proj. B: -1300 psi is assumed. for

I;E?-i compressional- and ~% x 1300 = 650 psi
?.—
| for tensile-strength (as usual taken,

§ 1.2.2).
| - So eq. (9) becomes: (86 =% = Vva)
300 pst % : 66
1 1
% _ /((J'— 1300 (1 * 1300)) —
T. o
Fig. 10. 6 1
1+ B 350
Mith:  ap %1300
B=—208 - 3900 F 52
= e R Sl Foas - S

It is seen from fig. 10 that with B somewhere between 0,9 and O,§§ (= 1),
a good fit is possible.

For B ~ 0,9 the fit is even reasonable for the values of proj. B, demon-
strating that the influence of g, is probably small.

For proj. B eq. 8 must be used with: 0, = o cos? e; 0, =0 sin® 63

1 max max
Og = Oy sin 6 cos 8, but the strengths for compression an tension in
the tangential and radial plane are not given in [7] and construction
from the measured values that are given (see fig. 10: points) will pro-

bably introduce great errors in these strength values and in Fles

Rotating eq. (9) about the 3-axis for 90° gives: (02 = 0)
- - A
F66 Og = 1l or O = O
If o, # 0 in the tangential plane but o, = 0, the fracture surface is:

+F. 02 +F o2 =1

kg @ 22 92 65 "8

2
getting an elliptic form (fig. 10=~-.) eq. (10) of the radial plane ap-
proaches the parabolic form (with cut off at -X'), known from fracture

mechanics. (Also the low values of Og» much lower than [—ol| in stead of

much higher, [6] indicate initial cracks, see § 2.3).




a2

A4

Uniaxial off-grain-axis strength

So far all rotations were around the grain axes. Taking the 3-axis of
rotation in the tangential- or radial-direction, the same general frac-

ture equations apply as given in § 1.2.2.

Usual the tangential fracture plane is regarded, giving a lower bound
of the strength (or being the weakest plane).

The existing criteria are given in the main plane, using the transforma-
tion of eq. (5).

For uniaxial stress is:

1
1

1

g, =0 cos2 03 0. =0 sin2 03 Ol =0_ sin 6 cos 6
m 2 m 6 m

and eq. (5) becomes:

2 4

0~ cos O
2 1 1 g 2 1 1 m 2 . D
Om cos 0 (Y Y,—) +Om sin 0 ('?- YT) +—)?)?T———+ 2F12 Om sin 6 cos 6 +
02 51nq 0 02 sin® 6 cos” 6
+ = + = =1 (11)
b 1 9 - 1
s
The first two terms can be written:
o cos2 0 o sin2 S} o 0052 S, o sin2
m ¥ m ( m N m )
X Y xX? Y'!
and because:
o] 0052 §) o sin2 S
m i m _—
X Y

(Hankinsins formula see [6] page 809; 663; 747) or:

2

O costf o sin” 6

X Y!

+
&
=

for compression, F,, is known from (11).

Taking the square of both terms, the last equation for compression is:

O4 cosL+ 0 202 cos2 0 sin2 0 0o~ sin ©
m i m .

1 1
)2 (y')(xm) (¥1)2

(x'

This must be approximately equivalent to the Norris equation for this

case:
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Oi cos™ 8 Oi 0052 0 sin 8 O; sin? 6 cos® 8 Oi sin” ©
. X' Y t 2 4 g =
(X") S (Y")

So:

j% =z §T§§T, and in the same wayAJE = %% for tension.

S S

' 1
The value S = V = 3Y = 0,58 vV X' Y'" = 0,6 v X'Y' is measured in [8].
Taking the product of both Hankinson's formula's,
B cos2 S o sin2 6 & cos2 0 B sin2 5]
( 3 % 7 = 14 s 5 +1)=o

being the condition for failure in tension or compression, so:

02 cosL+ 0 02 sin2 6cos2 ) 02 sinq B
= .. + B +0 0052 6 (-l -
XX! X'y Yy'! m X

1
X

) +

2

L .2 2
+0 sin? 8 (l_i') + Tm sine cosb _4
m Y Y

Xy
then this has to be equivalent to eq. (11):

2 -+ 2 4

o~ cos 6 0_ sin ©
m 1 2 .2 2 m 2 1 1
U +(2F12+—S—2-) o sin B cos” B+ 75 +0_ cos 6 (Q-F)+

L 2.1 1.

+Om sin® © (:Y—Y—, =1

So:

i . i g 1

dptZ iyt

For clear wood, mostly: X = 2X' and Y' = 2Y are taken for the strength

- P FEPE o B o1 .1 1 2.1 _3_ 1
so XY = 2X' Y'/2 = X' Y' and 2Fl2 > Y'+§?T =

'S7~X—Y+2XY X3

or, as a first approximation, Fio is in the order of:

L1
Fo® 1ty ® "t v (

-1 =1 ..
e YT < YTy for stability)

Because of the strong, orthotropy this value is small in the main planes.
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Therefore the older Norris equation is a better approximation of the

strength. In that case:

1 ]
s =V . 2Y and F12 o+ E3?£7Tr (F12 gets the opposite sign, but re-
mains small)

For off-axis strengths the equation for uni-axial stress is:

2 .
Y 1 N s 9!
Fi, 07 ¢ Fj o, =1 (asin §1.92) (12)

With the values of [6] page 809, as lower bound of uniaxial strengths,

(that could be regarded to be the strength at - 45° in fig. 8) is:

p 21 11 1 ., p 1 1 _1_ 1 . _ 1 _ 1 .
17X X" 7700 400 ® "2°Y Y'"30 40 ® “11 XX' ~700=x 400 °
1 1 1 1 1 -5
e e e i ¥ e ' e = =+ 5.4 .
P "W " Tox30 ° 2 7 and Foo =t o650 T00 . 30,50 L0t 10

as bounds. The value of S is taken from § 1.2.3., but the right value is
not important in this case, because l/S2 acts together with 2P12 and here:

2F 1, l/S2 is a determining term.
The roots of eg. 12 (see also § 1.2.2) are given in fig. 11.
It is seen that for F12 ~ 0 there is a close fit to the Hankinson formu-

la for tension that is supposed to be a good lower bound of measured va-
lues in [6] page 809.

For compression, F12 = 0 underestimates the Hankinson values, so for a
2

2
291 02 01 and Fll2 Ol 02 have to be

used. However, the difference is to small to justify a more complex equa-

precise fit the higher order terms F

tion. It is not sure that the Hankinson formula for compression gives
the points of first flow. Probably the higher order terms indicate that

some plasticity was allowed in the tests.

The given bounds in fig. 11, connected with Fl?’ are also dependent on S.
The relative lower value of S in [7] will shift those bounds and also the
coéfficiénts in the Hankinson formula will be lower, (about 1,6 instead
of 2).

The possibility of this lower coéfficiént is also mentioned in [6].
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Fig. 11. Stength in kfflem?
Conclusion

It is demonstrated that a nearly exact representation of the failure sur-

face of wood is given by the equation:

2 2
Fl 01+F2 02+F3 03+Fll 01+2F12 ol c52+2F13 01 O3+F22 62+

+ F 02+P 02+F 02+F 02+3F o] O§+

t 2Fy5 0, O 33 93 *Fyy Oy +Fg5 05+ Fgg Og +3F g6 0y

23 72 73

2 2
+ 3F (o] 02+3F2210 o

112 91 g Py 8 L (13)

The value of Fiee is a quick damping term with axis rotation and only im-
portant if fracture is surely in the radial plane. In practical applica-
tions, this can not be assured and this local strength increase has to be
neglected. Also the influence of the third order terms Fi10s Fooq is to

small to justify a more complicated equation (and bounds) and these terms

are probably due to some allowed plasticity in the compression tests.
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It is not known if this influence remains small in 3-axial test condi-

tions. The roots A of eq. (8) or (13) with the general value of a, (see
§1.2.5)

a,. = 8F S S + 3F S 82 + 3F

3 166 1 “6 122 ©1 "2
(if a small quantity), can exist of two small negative equal roots and
a great positive one. So there is no theoretical exclusion of a high
3-axial strength.
Tests have to be done with unequal 015 0y and 05 to measure these inde-
pendent material properties.

Thus far, a strength increase is not apparant for tri-axial strength

(see also § 2.4) and as a good approximation eq. (13) becomes:

2 2
Fl 01+F2 02+F3 03+F11 01+2F12 ol 02+2F 3 ol 03+F 292 2+

2
+F O +F o + F Og — (14)

2
+ 2Py 08?0, +F,, O 66

23723 33 73 Ly T4 55 b
For practical applications, the directions of the weakest plane _L_grain,
is not known in the structure and a lower bound criterion has to be used.
It is shown in § 1.2.1. and 1.2.2. that with a lower bound on the tensile
strength perpendicular to the grain, the quantities in the plane _L grain
(here chosen as 2-3-plane) get the isotropic form, and F,3 can be disre-

garded, so eq. (13) becomes:

2 2 2 2
11 04 02'+O3'+20u
(?'3(_") o, + (Y Y,)(o +0 )+Xx' P12 (c:1 O, + 0y 03)+ 77 +
4 <2 (02+02) =1 ) (14)
2 5 6
S
In § 1.2.5 it is shown that for small clear specimens and high shear
strength (// grain), F12 can be neglected so eq. (14) can be:
2 2 2 2
(0] 0. +0,+20
1 1 1 P Bl B3 $5ie 9.
(Y'W) °1+(? Y.)(o +0 )+XX' i +;§ (05+06)-1 (15)

In fig. 12 eq. (15) is given for only 0, and 0, (O3 =0, = 0g = 0) in
comparison with the usual applied Norris equations.
Eq. (15) lies closer to the older Norris equations, based on the Henkey-

von Mises-theory and applied for plywood and fopr wood in the U.S.A. and
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Fig. 12. Failure surface for O3 =0, = 0g = 0g = 0.
the European (C.I.B.) code:
02 02 02 02 02 02
1 2 6 _ 1 2 6 _
— + — +‘—§ =1 5t 5+ 5 = 1 etc.,
X Y S (x") (Y") (s")”
than to later proposed equations for wood, what are known to be not en-
tirely adequate.
Eq. (15) is an extension of the strength criterion to 3 dimensions .
The general form of eq. (15), independent of the choise of the coordinate
system is:
2 f 2 ( 2 L
Flo +F2 02+F3 03+F6 06+Pll ol+P22 02+F33 03’“?44 o, t
¥ F 02+F' 02+2F' o, 0, + 2F . 0, 0 +2F' O3 0q +2F) 0. 0
55 5 66 6 12 V1 T2 23 72 73 31 ~3 16 91 % *
oF! o, 0. +2F) o,0.+2F . 0 o, =1 (15%)

26 72 76 36 "3 76 45 "4 75
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Physical failure criteria

Discussion of criteria based on plasticity theory

Potential energy function

For yield phenomena, occurring e.g. in wood in compression, an extension
of the isotropic theory is known from Hill.

He postulated the existence of a quadratic plastic stress potential (po-
tential energy function) that had to be orthogonal and symmetric. This
leads to equal strengths in positive- and negative-direction and no yield
for hydrostatic stresses. This is in general not true for anisotropy be-
cause for hydrostatic Op = 0pp = Opq73 €
possible. Hoffmann [3] modified Hill's theory by adding linear terms to

1 # €17 # €q77»> and yield remains

account for differences between tensile- and compressive strength.

The isotropic equivalence is the von Mises-Sleicher hypothesis that the
second invariant of the deviatior stress tensor is not constant but a
function of the mean stress (used for materials with Bauschinger effects).
For isotropy it is the same to state that the critical distorsional ener-
gy is a function of the mean stress in stead of a constant value (as in
the Henkey criterion). For anisotropy there is not such connection be-
cause the coupling of strengths need not be the same as given by the
deviator stresses, so the Hill- and Hoffmann-equations are special ca-

ses of orthotropic strengths.

. : _ a2 2 32
The H;ll equat;on. 2f (g) = Ay (0,-05)" +A, (0, -0,)" +A5 (0,-05)" +
2A4 04 + 2A5 05 + 2A6 06 = 1 has 6 constants and the surface is deter-

mined by the 3 principal yield stresses (as for isotropy) and also by
the 3 directions of the principal strengths with respect to the mate-
rial axes because these strengths are not necessarily along the material
axes.

The equation contains a number of conditions.

Because of orthotropic symmetry of the material, the positive and nega-
tive shear strengths along the material axes are equal. This is given in
the last 3 terms of the Hill equation. The first 3 terms contain 3 con-
ditions of equal yield stress in tension and compression, and 3 oriénta-
tions of the surface by the given values of the coupling terms of the
normal stresses. In other words: a general quadratic orthotropic sur-
face is determined by 12 constants.

These are the nine independent strength components (3 uniaxial tensile

strengths; 3 uniaxial compressive strengths; 3 pure shear strengths)
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2

and the 3 angles of oriéntation of the orthogonal surface with respect
to the material axes.

2 2 2 2
The Hoffmann equat;on. B12(02-og) +B, (01-03) + B, (01"02) +B, 04
B5 02-+B6 Ol-+B7 06-+B8 Og +B9 Ol1L = 1 has 9 constants because now ten-

sion- and compression-strengths are different. The 3 special oriénta-

+

tions of the Hill surface are however, retained.
As seen before, there is no coercive reason to do this. So all the 12

constants of the general form of a quadratic orthotropic surface

62 02 02
101 101 101 1 9 O3
O (F-xr) t0 G- + 03 (G-gv) typr tygr t gy 2P, 01 Oyt
03 og og
+ 2F23 02 o3+2F13 ol cv?)+-§+—2—+—2 =1
s, S Sg

are independent material properties, and beside the strengths X, X', Y,

etc, also the values of F F23, FlS have to be measured.

12°
The potential energy function can be found by the principle of virtual

o = spiasts " e L 6welast., variatins sef as virtual

works:
plastic deformation (E§ = Ai EP) and letting ef > 0 for beginning of
flow. Optimization of the function with respect to the displacements
(Ai) gives an unique, energetically feasible value of the starting of
yielding.

Another approach is known from thermodynamics.

It is demonstrated there, that at flow, for sufficient small variations
to get a linear irriversible proces, and Onsagers principle is appropri-

ate, a function Y exists so that:

_ 9y
Oij = aé?, (see p.e. [10])
1]

The inverse relation is the plactic potential function: 6, being identi-

cal to the yield function at flow (for an isotherm proces) and for wich:

°P 26
de’ij SEe dx

the normality rule applies.

Distortional energy theory

An extension of the distortional energy theory has been given by Norris

for a special form of orthotropy.



_.22..

With the scheme of the material as rectangular prisma-
tic voids with isotropic walls, he calculated the dis-
torsional energy for proportional loading and found 3

Mises type equations for each set of walls:

\ 2 2 2 2 2 2
= Ol Ol 02+02+06_1 0'2 02 O'3+O'3+O‘+_l
7 Neea- e P — & = — i M

X2 XY Y2 Sg Y2 YX X2 Si
9 95 % o 9%
Fig. 13 - g% t5t—3=1 or for plane stress:
Z Z° sg
o? o2 o, 0, o2 o2 o2
1 2 1 2 6 2 _ 1_
Bt tptliptligEt
XY 86 ¥ X

(If: X'= ¥523 2/3 Sy = V3 ' x Sg = V3 % Sg = Ty 7 isotropic Henkey yield
criterium).

Because there is a difference in compressional- and tensional-strengths

we have to assume different critical energies for tension and compres-
sion and the only right interpretation of the Norris equations is to

give different equations for each stress-quadrant. For instance for com-

pression-tension:

02 G20 02 02
1 e 2 6
VA 2 2+ 2—1 etc.
X (Y')> (s")
This is given in fig. 12 for o, = 0, = 0. = 0. = 0.

3 4 5 6
An experimental verification of this difference for tension and compres-

sion is p.e. given in [14].
As an extension of the Norris model we can assume an armature in the walls
along the material axes, not interacting with each others like in concrete.

Adding the energies of the armature we get the more general form:

2 2 2
o] o] o
ot PRE. G 4t o = 1 et
R ) e 7
X Y S
6
If we now assume initial stresses in the armature to give the material
equal strength for tension and compression (e.g. initial stress o, =§%X;
tensile strength o_ = Xy, -0 * 0, +0; = X5 OeamBos -Y), we have

to subtroct these Fictle stylesec 1 CQMPT: :
' and get the formicres ¥ te enerqy equalions,

O2 02 02
1eud 101 1 2 6 _
%1 R0 Gyt e tFe 1 %tz B
6




If there are other interactions of walls we finally get

the three-dimensional equations like eq. 14 (§ 1) to be

the critical distorsional energy equation for an ortho-

tropic material like wood.

Fig. 1u4.

Hardening rules

Wood under compression exhibits plastic flow properties.

For tension, under certain operating conditions (e.g. impact), elastic de-
formation and brittle failures are more common.

However, for the usual loading conditions, the range of stable crack pro-
pagation is large enough to make an elastic-plastic description possible
for tension.

For this reason, the limit analysis methods are in general applicable to
wood (equilibrium method, etc.).

Because there is more plasticity in compression than in tension, the yield
surface gets not only an expansion by hardening (like isotropic hardening)
but also a translation (like kinematic hardening) and, as can be seen in
fig. 9, also the shape of the surface changes. But the surface remains
determined by the 12 independent strength components and it is necessary
to know the hardening properties of these strength components.

Giving the loading function: 2f ({o}, o) = F; 05 + Fy.

J
{0} the stress vector and o, the yield constants (X, Y, X', T

0. 0. = 1, with
13

S, etc.)

122 "4

the relation between stresses and total strains:
{do} [Sep]{de} can be found.
{ae} {ae®} + {aeP} with an elastic- and a plastic part

Because of the associative flow rule, wich states that the plastic strain

increment is perpendicular to the yield surface f: divz‘ﬁk ﬁ%%{
{do} = [Se] {dEe} is the elastic Ya-rt So

{de} = [se]'l {do} + dx {%g

3F,7

or, on multiplication by {53} [Se]:




T
36 s et = 2B o)+ an 2 5,183

Now for flow 2F = 1, and for no unloading df = 0, so

i
a=0= ) {do}+,§%.dou or 35} fao} = -2 a0 = n

u

and the above equation becomes:
L%g} [s.] {de} = (A + {BF [s.] {BF}) d\ and {de} is found from:

af. T
{aF} {30} [s,] {ae}

{de} .2 [Se]—1 {do} +
F

A+{ F} [S.] 55

Multiplication by Se and rearranging gives:

[S. ]{ }{3—3 [S_]
 |{ae} = [s_] {ae}
aF -

{do} = [Se] - T
A+{8F [s ] {

oo e BB - . y . .
A = Ix aou dOu is determined by the measured hardening diagrams:

dOu = Hu d€u with arctg (H) as slope of the o, " &, diagram. Because deu
is the plastic flow of the special case of an uniaxial loading, the nor-

mality rule must also be valid and

deu 2 ' éﬂi = -dx égi and so:

2
g ar _ (of
A —-X -3_ H d€ (-gg‘;) Hu

For a weak hardening case we can make the following approximation:

e

(s, ]{—}{BF} [S ] A [s.]
=] - x

A+{8F [s]{F A+{-§—-§} [S]{ }

|
A [Se] [q ] (——7:) Hu
] 5T [Se] X scalar
£ 5,12 {%g} s,1 35
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and {de} ~ {deP}. So {do} is found by reduced elastic stiffness factors,

depending on the state of stress.

The values of H can be found by uni-axial tests in the main directions.

For the compression test _L_e.g. isi (02 to Og = 0):
02 02
1 1 i 1 2
Q_F_Fi oi+Fij o oj_(X X')01+XX‘+(Y Y')02+YY'+ ..... etc
- 20'_
5 BE _)1 ! Ll 1.1 1. 1 1 .1 1
v 1 v EL A EE vy BT v
Sol o syt IXXTTXXT Y YT X XY Y
1 1
if Z is the strong direction
511 i . Why:- 3 S B
. 2 XK 2 ¥ 1°
1 1
7 Gy _cl2 a1y Se0 a3,
2 A R 2 % 1
1 .31
- 7 &7 513 L,1y,228 1 1,
< ~ b . - 1 1 s
=t = 4 and: [S, ]{ } T2 XX 2 Y'Y r with
il
0
0
- - 0
S;7 S15 8430 0 0
Syp Bgp By ¢ & O : ,
Sin Sog Saa 0 0 O d 11 ,1 1
[s.] = 13 °23 °33 { } (s, ]{F = G-3v) t
0 0 0 §,0 O . )
0 0 0 0 S0 12 ,1 1 1 01,.1 1 1
55 - (S+or) x (F-5) S, (F-7)
5 & 6 & B & 2 XX Y'Y 22 'Y Y
- 2 & 3 g B
2 o o
oF 1 ¥y oy 1 1 1
( ) H =|3x (- =-——) .H + = (+ —- ) Ho,
30 4 3P el X m g2 oine %
— e, ) - sl e |
Gl X Gl X
2 2 2
1 % X 1 1 1 _1 .1 .1
T (&G e Cxox) Hetp ey By
X“ X
of 2
(3—) H 1,1 1
_ y 7t%) Hy _
V=Y -
{BF} s, ]{aF 11,1y Sz SFL 0 1)
L XX 2 XTXTV T P22 \YTYT




HX'

S12 1 1

T 7/ &

H
Xl
[sel

5, A7) W

S.. S.. S
S., S
22 523
w2t {1 =%) with e = Sis Sgs B
X! 1 |S23 S33 1A R
513 Sg3 S

23
33

From the measured values {de}; [Se] ; do;, the value of Hy, can be found

1
using least squares with the other equations in de, and de, too.

It is seen that the determination of [Sep] is a very lengthy and labo-
rious task, only suitable for digital computation.

Another possibility is the elastic-fully plastic approximation with:

{aeP} = ax {aF} (so A = H = 0)

In this case, for gy = -X' and other o

2@,

de v _'T)]
X X XX G

1 = 4 [(

bl )
= =X'; o, = 0) as expected.

It is intended to measure whether this approach is sufficient.
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Some remarks on criteria based on fracture mechanics

The most simple criteria used for orhotropy are the maximum stress theo-
ry and the maximum strain theory.

The maximum strain theory, as extension of St. Venants theory leads to
contradictions (see [2]).

The maximum stress theory states, for orthotropic materials, that the
strength is reached, when any stress along the natural axes reaches its
maximum value.

This theory neglects interaction of stresses and the domain where this
can approximately be right is given by fracture mechanics because only
the stresses in one plane are magnified by a flat crack and one single
principal tensile strength may determine the total strength.

The strength is now a plane problem determined by Mohr's envelop. If we
look at the maximum stresses lying along the crack boundary, the strength
can be determined by the principal tensile stress, being the only magni-
fied stress. So whatever the fracture criterion is, there is only one
stress (others being neglectible) determining the strength. If we do the
variable transformation of appendix 1, we can use the isotropic solution
of the crack problem for orthotropic material.

For a crack propagating J_ to the direction of the maximum tensile stress

along the boundary litt. [12] p. 265 gives:

2
T

Q
N
Q

. . SRR - D S
(20,) t u t

t
The form remains the same if we transform this back to the original va-
riables. So for not collinear crack propagation depending on the uniaxial
tensile strength (along the boundary of the flat elliptical crack) we
have

2
) =1

R By
+ (——

KIc KIIc

This is measured by Chow and Woo [13] for a light wood species and is al-
so measured in the radial plane of pine (see §1, fig. 10: %L-z 1- 7%).
So it is not necessary to assume friction for the shear strgngth increase
// by compression‘J_([lS] Jaeger, Keenan),It is noticed that, despite of
some compression, failure can be in the opening mode, so the failure is
not by shear (and friction) but by non-collinear crack propagation and

M . .
KIIC is dependent on KIC and is smaller than the real value of KIIC
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(This is often found in tests see [13] J.F. Murphy p.e.).

For collinear crack-propagation is: gX = 1 and only for tension _L_to
the crack this will be a principal sthess. So for combinations of shear
and tension, both stresses are magnified and we have to know the fai-

lure criterion. For this, sometimes the maximum stress criterion:

o £
Ic gtc

is used, or the linear combination:

K K

I IT
ol o
Ic LIc
to account for the smaller "KIIC" of non~collinear crack propagation and
to maintain the separated measured real K in this fracture criterion.

IIc

However, the real K from collinear propagation due to pure shear along

IIc
the grain can only be a local strength increase in timber because of faults,
deviations of the grain directions, knots etc.

If it is assumed (as usual for wood) that the initial crack is in a plane
along the grain (orl) and also the propagation is collinear (along the
grain (or J_) the fracture criterion for the region around the crack tip
must be the same as the macro-criterion expressed in stresses in the ma-

terial axes and must have the form of the (extended) plane Norris equa-

tions.(like eq. W4 §1>

However, non-collinear crack propagation is apparent and also the com-
pression stress around the crack can be high, giving stress redistri-
bution around the crack by layer-buckling etc., so using the concept of
the critical strain-energy-density at the borders of the plastified
areas, and assuming randomly oriénted cracks, we get a similar 3-dimen-
sional, quadratic polynome as given in 81 and §2 as expansion of the
failure criterion.

The maximum stress criterion can not be made entirely adequate as can

be seen in the next schematic graphs of the strengths, and in fig. 12

(and 12').




Solid lines : polynomial equation

Dashed lines: maximum stress theory

Fig. 15.

JireWnom3qlcﬂudme

max. gfress theory

Fig. 12'.

Layer buckling

Interation equations of buckling contain linear and quadratic terms, p.e.:

o]
T )2 1 02
+ <7 + 7
cY cY cY

(

i

similar as for crack propagation (§ 2.3).
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However there will always be interaction with crack propagation and the
buckled areas increase the "plastified" zone around the crack tips so a
more general interaction equation (like eq. 14) is probable.

If buckling is the ultimate condition for compressional failure of wood,
there will be no strong strength increase if €7 = €q7 = Eqqp» @S expecs
ted from plasticity theory, because the real stresses in the cell walls

are plane and one real € is zero.

Viscous properties

Wood has viscous properties and is influenced by time, temperature, mois-
ture etc.

All those influences can be taken into account in the strength parameters.
So e.g. the uni-axial strength criterion becomes:

2
1 1 ¥a

% o T rEy Ty X ol

where X and X' depend on time t, with possible different rates of creep
and different long term strengths.

So far, there are no observations, that contradict this model.

Conclusion on physical failure criteria

It is demonstrated that the general orthotropic quadratic polynomial
stress equation represents a potential energy function or the critical
distortional energy function for an orthotropic material.

The polynomial expansion of that function 6 will have the orthotropic

basis for wood: N

. _2 2, 2 _
6 (0,4 0 Oq5 0,5 Ogs 06) (see [9]; orthogonal planes x; = 03 %, = 0)

and for a transverse isotropic approximation (or lower bound § 1.3):

2 2 2 "
6 (0,3 0, + 033 0, 05 - 0,3 Og + Og3 det. (Oij)J in general or:

) with Il, 12, 13 the 3 stress invariants

o N

2
6 (Il, I3 I35 0530, +0
(symmetry about X,-axis)
For plane stress: Oy =0, = 0g
(orthotropic and transverse isotropic) is:

= 0, the polynomial basis for both cases
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2 g
6 (0,5 0,3 0g) or in general:

1 2
6 = + C, 0, + Cll 04

] 202 %t3

1
+ 5 ¢

2
5 i 0 O, O

g 12 91 9

22

It is shown in 8 1 (1.2.4. and 1.2.5.) that there is some influence of

higher order terms, probably due to some non-linear elasticity and plas-

ticity, and some deviation from orthogonal strength behaviour. The qua-

dratic polynomium is an inscribed surface or lower bound of the strength.

We can only expect that some function of the distorsional energy gets a

critical value. It is known that for wood in the elastic stage there is also

some deviation from orthotropic behaviour. For practice however, the as-

sumption of orthotropic elastic- and plastic behaviour with critical dis-

tortional energy for flow is a sufficient approximation.

The best, we can regard 6 as a potential energy function.

Because the polynomium is an expansion of the real yield surface, higher

order terms are possible depending on

the form of the surface (and flow

rules). As shown above this surface will be a complicated function of all

stress invariants.

From the model of non-collinear crack
cracks we can also expect to have one
main planes determined by the tensile
Ce = C16 = Cop 166
to have an interaction between shear-

= 0 but C £ 0 etc.,

propagation of randomly oriénted
mean pure shearing strength in the
strength near the crack tips (so
see 1.1.; 1.2.4. and 2.3.) but also

and normal-strengths.

In general the conclusions of § 1.3. are confirmed.
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Appendix 1

Variable transformation for orthotripic plane problems

For plane stress is Hooke's law:

AY
1 12
€ - - = 0 (o
i Ell Ell 11
\Y
21 1
& = |- —= = 0 (0]
22 E22 E22 22
1.
2€ 0 0 —|C
12 G12 12

Introducing new codrdinates as variable transformation:
X=X //6 5y = X /6
1 2
the stresses and strains become

(0]
XX

011/6 3 Oyy = 022 § 3 O = 6 : € = € § : ¢ = € /6 ;
Exy = Sy

Hooke's law becomes:

e Fl =)} 0 o
XX XX
1
> s&fu 1 0 o 1
vy E vy S
2¢€ 0 0 2(K+V) o
XKT xy
g . 4y _ _
with: &7 = Ell/E12 = 912/921 (symmetry)
E =VE ;] Ep
¥ = F¥e Ve N § , y
1 1 12 21 ) 12 _ 21
K =5 VB By (5 E - " f ) Withg— =g

12 11 22 11 22
(As indication for wood: § * K = 2; for isotropy: § = K = 1).
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For plane stress and:

i E11 Eop e \/\)12 +V13 V3p)(Vpq +Vp3 Va3
- e - E} b - =5 )
(=15 V31 Vy5 V30) (1915 V310 -V) 0 Va))

y Eg1 1 Voz Vi o 1 Vi *Vi3 V33 Vo1 tVo3 Vg3
8 g = x g5 3 K=5 E (g~ B - E )
22 13 V33 12 11 22

for plane strain.

The Airy stress function ¢ is the same for the original- and transformed

variables, so for equilibrium:

g__ £ 239 &g = 939 P 0. =~ 82¢ (2)
XX 8y2 > Tyy 8x2 > Txy 0X dy
and for compatibility:
4 mn M
(a ﬁ + 2K 2 ¢ i i ﬁ) =0 (3)
9x 9x"~ 9y dy

Now eq. (1) can be written in the isotropic form:

£ 1 -V 0 o
XX XX
€ :-1'- -V 1 0 o
vy 13 yy
2e! 0 0 2(1+v)| |o!
Xy Xy
With 0! =o0__and €' = ¢ l+vth't i luti foi lower
xy -~ %y xy - Exy K+ v e isotropic solution o is a low
bound because the solution satisfies the equilibrium conditions, but is
. . K+ Vv " .
L | - -
not compatible. With €xy = exy and Oxy =T Oxy’ the solution satis

fies compatibility but not the equilibrium conditions, thus is an upper
bound solution.

For both cases the normal stresses are the same. So if there is a maxi-
mum normal ultimate stress criterium, the isotropic value of ¢ gives a
possible solution what is the right value of the ultimate state (with
equal upper- and lower bounds).

The calculated ultimate state differs an internal equilibrium system from
the real ultimate state without affecting the ultimate value.

The same can be stated for an ultimate shear stress criterion.
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The internal equilibrium system affects only the normal stresses in this
case.

So. for a proper geometric- and material-transformation the solution of
the crack-problem of an orthotropic material is the same as for an iso-

tropic material.
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